Выбрать главу

Рис. 1. Так выглядит рентгенограмма кристалла белка

Мало-помалу «рентгеноструктурщики» переходили к все более сложным объектам исследования и наконец в 1930-е годы обратили свои взоры к биологическим молекулам. Однако после первых же попыток стало ясно, что решение задачи им пока еще не по плечу. Прежде всего из биологических молекул очень трудно получить кристаллы. Но даже если это удавалось, десятки тысяч атомов, входящих в каждую молекулу, создавали на рентгенограмме такой причудливый узор, что восстановить по нему координаты всей этой массы атомов было просто невозможно. Потребовались многие годы, пока ученые научились решать столь сложные задачи.

Преодолением этих трудностей занимались в Кавендишской лаборатории в довоенные и послевоенные годы. Усилия лаборатории, руководимой Лоуренсом Брэггом, были сосредоточены на определении пространственного строения белков. Это и понятно. В те годы все были убеждены, что главная молекула живой природы – молекула белка. В самом деле, ферменты, т. е. молекулы, проводящие в клетке всевозможные химические превращения, – это всегда белки. Белок представляет собой главный строительный материал клетки. Неудивительно, что всеобщим было убеждение, что и гены устроены из белка. Казалось несомненным, что путь к разгадке всех тайн жизни лежит через изучение строения белков.

Рис. 2. Аминокислотная последовательность одного из белков (лизоцима.

Белок представляет собой полимерную молекулу, мономерными звеньями, «кирпичиками» которой служат аминокислотные остатки (рис. 2). Аминокислотные остатки располагаются всегда строго линейно, плечом к плечу, подобно солдатам, стоящим по стойке смирно. Но так устроен и биологически активный белок, и белок, нагретый, скажем, до 60 °C, когда он уже полностью теряет свою биологическую активность. Значит, одного химического строения белка, т. е. последовательности аминокислотных остатков, недостаточно для того, чтобы белок был биологически активен. Необходима еще совершенно определенная укладка в пространстве групп, закодированных на рис. 2 в виде сокращенных названий аминокислот, которые на самом деле вовсе не кружочки и не шарики, а имеют каждая свою весьма причудливую форму. Вот за то, чтобы определять пространственную структуру всей молекулы белка по рентгенограммам типа приведенной на рис. 1, и велась затяжная борьба в стенах Кавендишской лаборатории. Лишь в середине 1950-х годов Джону Кендрю и Максу Перуцу удалось добиться успеха – они научились определять трехмерную структуру белков. Это случилось уже после того, как была решена проблема устройства гена, – к чему, как оказалось, белки отношения вовсе не имеют.

Уотсон и Крик

Из тех, кто откликнулся на призыв Шрёдингера, двоим посчастливилось первыми подняться на вершину. Это были совсем еще юный воспитанник фаговой группы Джим Уотсон и не столь юный, но в то время мало кому известный сотрудник Кавендишской лаборатории Фрэнсис Крик.

Будучи одержим идеей узнать, как устроен ген, и считая, что фаговой группе эта задача не по плечу, Уотсон добился в 1951 году, чтобы его отправили поработать в Европу. Вскоре он осел в Кавендишской лаборатории, так как встретил там Крика, который был настроен так же по-боевому, как и он сам. Уотсон к тому времени уже был уверен, что ключ к разгадке тайны гена лежит вовсе не в определении структуры белка, а в выяснении структуры ДНК.

Вообще-то, молекула дезоксирибонуклеиновой кислоты, а это неуклюжее название и кроется за сокращением ДНК, не была чем-то новым. Она была открыта в клеточных ядрах швейцарским врачом Фрицем Мишером еще в 1868 году. Затем было показано, что ДНК сосредоточена в хромосомах, и это, казалось бы, говорило о ее возможной роли в качестве генетического материала. Однако в 1920-х и 1930-х годах прочно утвердилось мнение, что ДНК – это регулярный полимер, состоящий из строго повторяющихся четверок мономерных звеньев (аденинового, гуанинового, тиминового и цитозинового), и поэтому эта молекула не может нести генетическую информацию.

Считали, что ДНК играет в хромосомах какую-то структурную роль, а гены состоят из белка, который входит в состав хромосом. Что же заставило Уотсона и Крика усомниться в справедливости концепции белковой природы гена? Главную роль здесь сыграла работа, законченная к 1944 году тремя американскими бактериологами из Рокфеллеровского университета во главе с О. Эвери. Эвери многие годы изучал явление генетической трансформации, открытое в опытах с пневмококками – возбудителями пневмонии (воспаления легких). Эти удивительные опыты состояли в следующем. Брали два вида пневмококков. Одни были способны вызывать болезнь, а другие – нет. Затем болезнетворные клетки убивали путем нагревания и к ним добавляли живые «безобидные» клетки. И вот оказалось, что некоторые из живых клеток после контакта с убитыми каким-то образом «научились» вызывать болезнь. Получалось, что живые клетки как-то трансформировались мертвыми клетками. Отсюда и название явления: генетическая трансформация. Было ясно, что в этих опытах что-то переходит из убитых бактерий к живым. Но что? На этот вопрос и удалось дать ответ Эвери и его соавторам. И хотя их работа была напечатана в медицинском журнале, ею заинтересовались скорее генетики, химики, физики, чем медики. В этой скрупулезно выполненной работе было показано, что при трансформации способность вызывать болезнь переносится от убитой бактерии к живой только с одним веществом – с ДНК. Ни белки, ни какие-либо другие составляющие клетки в передаче признака при трансформации никакой роли не играют. Собственно, эта работа Эвери теперь считается первой работой, в которой было доказано, что вещество наследственности, или гены, есть именно молекула ДНК.