Собственно, тому, что в результате получилось, посвящена вся эта книга. Мы постепенно расскажем обо всех главных особенностях строения молекулы ДНК и о том, к каким головокружительным последствиям в понимании основ явления жизни они привели и как возникшие в результате биотехнологии вторглись в нашу повседневную жизнь, произведя революцию в сельском хозяйстве, в криминалистике, в здравоохранении. Но сначала давайте выделим в модели Уотсона и Крика только ее суть, самую главную «изюминку».
Итак, согласно модели Уотсона и Крика, молекула ДНК состоит из двух полимерных цепочек. Каждая цепочка построена из звеньев четырех сортов – А (адениновое), Г (гуаниновое), Т (тиминовое) и Ц (цитозиновое). Последовательность звеньев в каждой цепи может быть совершенно произвольна. Но эти последовательности в одной молекуле ДНК строго связаны друг с другом следующим принципом комплементарности, или дополнительности (рис. 4):
•против А должно быть Т,
•против Т должно быть А,
•против Г должно быть Ц,
•против Ц должно быть Г.
Рис. 4. Молекула ДНК похожа на веревочную лестницу, состоящую из перекладин цвух типов – пар нуклеотидов А•Т и Г•Ц
В открытии этого правила комплементарности, которое и составляет главную «изюминку» модели Уотсона и Крика, очень большую роль сыграли данные о том, в каком соотношении встречаются в ДНК различные звенья, т. е. нуклеотиды. Данные эти были получены чуть ранее в замечательных химических работах Эрвина Чаргаффа.
Если внутри каждой полимерной цепочки атомы скреплены очень мощными ковалентными связями, то между комплементарными цепями действуют сравнительно слабые взаимодействия, подобные тем, которые удерживают молекулы друг возле друга в кристаллах.
Самой замечательной особенностью модели Уотсона—Крика было то, что она необыкновенно изящно решала самую главную проблему – проблему репликации гена. Если мы разведем в стороны две цепи, а потом на каждой нарастим, согласно принципу комплементарности, по новой цепи, то получим из одной молекулы ДНК две, причем обе будут идентичны исходной (рис. 5).
Рис. 5. Так, согласно Уотсону и Крику, происходит процесс репликации ДНК, в результате которого из исходной молекулы, изображенной на рис. 4, получаются две абсолютно такие же молекулы
Можно представить себе, в какое возбуждение пришел Дельбрюк, когда получил от Уотсона письмо, содержащее наконец-то решение загадки удвоения гена. Он сразу и безоговорочно поверил в предложенную модель. Под впечатлением письма Уотсона Дельбрюк и написал Бору те слова, которые взяты эпиграфом для этой главы.
Не только Дельбрюк, очень многие были сразу покорены красотой модели Уотсона и Крика. И хотя некоторые генетики продолжали фанатично держаться за белки, их единственным аргументом осталось такое общее соображение: не может быть, чтобы такая сложная штука, как жизнь, была в своей основе устроена столь просто. Аргумент, прямо скажем, не из сильных.
Так было установлено, что ДНК является самой главной молекулой живой природы. Нет, новых законов физики в биологии не обнаружили. Но центральную проблему, проблему строения гена, решить удалось.
Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике – открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии. Но на этом параллель не заканчивается. Чисто теоретические, фундаментальные исследования атома позволили человеку овладеть практически неисчерпаемым источником энергии и радикально изменили нашу повседневную жизнь благодаря компьютеру, Интернету, мобильному телефону. Развитие молекулярной биологии открыло возможность неслыханным образом вмешиваться в свойства живой клетки, направленно изменять наследственность. Это уже начинает оказывать не менее радикальное воздействие на жизнь людей, чем овладение энергией атомного ядра и всеобщее распространение Интернета. Мы уже вступили в век ДНК.
2
От ДНК к белку