Как делается белок
Далекие от науки люди часто ворчат, что, мол, новые теории порождают больше вопросов, чем дают ответов. Это действительно так. Непонятно только, что здесь плохого. В действительности чем больше вопросов порождает новая теория, тем она ценнее. Ведь вопросы-то тоже новые – те, которые никому не приходили в голову, а подчас и не могли быть даже сформулированы до возникновения теории. В этом отношении модели ДНК Уотсона и Крика принадлежит, пожалуй, абсолютный рекорд. История науки едва ли знает еще теорию, которая породила бы столько новых вопросов. И каких вопросов! Они касались самой сути явления жизни. Самый первый и самый главный вопрос был поставлен уже в 1954 году известным физиком-теоретиком Георгием (Джорджем) Гамовым.
Судьба Гамова во многом похожа на судьбу Дельбрюка. Гамов прославился в 1928 году, когда создал теорию альфа-распада, основанную на идее квантового туннелирования. В 1934 году, после нескольких неудачных попыток сбежать из СССР, он наконец, став невозвращенцем из командировки в Европу, сумел покинуть родину и осел в США. Как и в Германии при Гитлере, жизнь в СССР при Сталине стала к тому времени невыносимой. Ближайшие друзья Гамова, блестящие физики Матвей Бронштейн и Лев Ландау, были арестованы во время Большого террора 1937–1938 годов. Бронштейн был расстрелян, а Ландау чудом спасся, проведя год в застенках НКВД в качестве «немецкого шпиона». Ландау был освобожден в значительной степени благодаря беспрецедентному и отчаянно смелому заступничеству другого великого физика, Петра Капицы. (Капица и Ландау впоследствии были удостоены Нобелевской премии.) Если бы Гамов не сбежал, он наверняка тоже попал бы в жернова НКВД.
В 1948 году Гамов выдвинул теорию, согласно которой в начале мироздания был гигантский взрыв, произошедший около 14 миллиардов лет назад. Теория утверждала, что от начального взрыва должно было дойти до наших дней электромагнитное излучение, и предсказывала спектр этого излучения. С легкой руки советского астрофизика И. С. Шкловского предсказанное Гамовым излучение получило название «реликтовое». Поначалу теория Большого взрыва казалась слишком экстравагантной, и мало кто в нее поверил. Но в 1965 году два американских радиоинженера, Роберт Вильсон и Арно Пензиас, случайно обнаружили излучение, равномерно поступающее со всех концов Вселенной, которое обладало всеми свойствами предсказанного Гамовым реликтового излучения. Теория Большого взрыва получила полное признание.
В 1954 году, вскоре после открытия двойной спирали ДНК, Гамов вновь выступил с кардинально новой идеей, на сей раз в области биологии. Как известно, рассуждал Гамов, основными рабочими молекулами в клетке являются белки. Всеми химическими превращениями в клетке ведают белки-ферменты. Почти весь строительный материал клетки также белковой природы. Даже хромосомы лишь наполовину состоят из ДНК, а наполовину – из белка. Значит, работа клетки определяется набором белков в ней.
Отдельная молекула белка может содержать от десятков до нескольких сотен мономерных звеньев. Но если взять все белки клетки и расчленить их на отдельные звенья, то окажется, что наберется всего 20 типов аминокислот. Собственно, разновидностей аминокислот как химических соединений может быть бесчисленное множество, и химики могут, в принципе, синтезировать любые аминокислоты. Но живая природа использует только 20 вполне определенных аминокислот, которые поэтому получили название природных, или канонических. Этот набор из 20 аминокислот абсолютно одинаков, универсален для всей живой природы на Земле. Возьмете ли вы самую ничтожную букашку или самого мудрого корифея, вы обнаружите в них один и тот же набор аминокислот. Чем же отличается букашка от корифея? Отличие заключается в том, какие цепочки образуют аминокислоты. Иными словами, оно сводится к последовательностям аминокислотных остатков в белках.
Чем же определяются последовательности белков? Ответ классической генетики на такой вопрос звучал очень формально: эти последовательности задаются генами. Как именно? Ничего вразумительного классическая, или, как ее еще часто в достаточной степени справедливо называли, формальная, генетика ответить на этот вопрос не могла.
Вот на этот главный вопрос, утверждал Гамов, теперь после работы Уотсона и Крика, имеется четкий и ясный ответ. Аминокислотные последовательности всех белков клетки определяются последовательностью звеньев в одной из двух комплементарных цепочек ДНК. Эти звенья ДНК, называемые нуклеотидами, бывают, как уже говорилось в предыдущей главе, четырех типов (А, Т, Г и Ц). Таким образом, информация о последовательности 20 типов аминокислотных остатков в белках записана в ДНК в виде последовательности нуклеотидов четырех типов. Значит, провозгласил Гамов, клетка должна обладать словарем, переводящим четырехбуквенный текст ДНК в двадцатибуквенный текст белков! Так родилась идея генетического кода.