Гаусс отзывался о Великой теореме Ферма достаточно презрительно и считал работу над ней потерей времени. Возможно, он и сам пытался решить когда-то эту задачу, но, потерпев неудачу и разочаровавшись, повел себя подобно лисе из басни про лису и виноград. Но другие математики его времени подошли к задаче очень серьезно. Например, Софи Жермен открыла, что для простых чисел, теперь носящих ее имя (числа р, где р — простое число, и Р = 2р + 1 также простое), с учетом некоторых требований, которым должны соответствовать Р и р (в частности, что р не является делителем произведения трех неизвестных — х, y, z — из уравнения Ферма), теорема Ферма верна для n = p. С помощью этого подхода Жермен удалось доказать теорему Ферма для всех простых чисел, меньших 100. К сожалению, ее работа не была опубликована при жизни.
Адриену Мари Лежандру и Густаву Лежёну Дирихле удалось доказать теорему для n = 5. При этом они использовали математические инструменты, которых не существовало в XVII веке, такие как теория квадратичных форм. Доказательство теоремы является относительно простым для n = 3 и n = 4, но оно становится гораздо сложнее начиная с n = 5 и недоступно обычным методам начиная с n = 23.
В любом случае, Софи Жермен была первой, кто попытался найти решение для целого класса чисел, а не для частных случаев; также она открыла новые подходы к решению задачи, которыми продолжали пользоваться в последующие годы.
В следующие десятилетия были предприняты попытки Габриеля Ламе (1795-1870) и Огюстена Луи Коши (1789-1857) доказать теорему. Ламе удалось найти решение для n = 7, и на бурном заседании Французской академии наук он объявил, что вот-вот докажет ее для общего случая. Он в общих чертах обрисовал свою стратегию, которая основывалась на алгебре комплексных чисел. Но настоящая сенсация произошла, когда Коши, который был одним из самых значительных математиков своего времени, встал и объявил, что он тоже вот-вот получит доказательство и его подход очень похож на метод Ламе.
Так началась гонка между этими двумя учеными, которая была драматично прервана немцем Эрнстом Куммером (181 ΟΙ 893), публично заявившим, что подход Коши и Ламе неверен. Куммер справедливо утверждал, что они оба совершили роковую ошибку, когда предположили, будто комплексные числа, которыми они пользовались, имеют единственное разложение на множители.
После этого попытки Коши и Ламе провалились, в то время как Куммер продолжил исследования и в итоге создал новую математическую теорию, чтобы попытаться доказать Великую теорему Ферма. Данное исследование подтолкнуло его к изучению разложения на множители, на которое опирались французы, и это, в свою очередь, привело его к формулировке принципов того, что сегодня известно как теория идеалов. Инструменты для доказательства становились все более сложными...
Однако Куммер пошел еще дальше. Пользуясь еще более продвинутыми математическими методами, он нашел условия, которые делали возможным единственное разложение на множители. На основе этого он доказал, что существуют некие простые числа, называемые регулярными, для которых Последняя теорема Ферма выполняется. Куммеру удалось доказать теорему для огромного числа случаев (возможно, бесконечного, хотя не было доказано, что число регулярных простых чисел бесконечно). На самом деле ему удалось доказать ее для всех случаев меньше 100, кроме 37,59 и 67, являющихся иррегулярными простыми числами.
Подход Габриеля Ламе и Огюстена Луи Коши заключался в том, чтобы попытаться разложить на множители левый член уравнения Ферма в следующем виде: xn + yn = (x+y)(x+ςy)...(x+ςn-1y), где х и у — обычные целые числа, а ς — числа, которые известны как алгебраические целые числа. Последние, несмотря на свое название,— комплексные числа (числа вида а + bi, где i равен √-1), появляющиеся в виде корней некоторого типа многочленов. Важно то, что если это разложение на множители является единственным, можно доказать, что нет решений для уравнения Ферма, то есть Последняя теорема истинна. Ламе и Коши открыли новый фронт: использование комплексных чисел в степени. Но Куммер доказал, что такое разложение на множители в целом невозможно. На основе этого он пытался найти условия, при которых можно было бы его осуществить, что привело его к изучению так называемых циклотомических полей. Они являются продолжением рациональных, полученных прибавлением одного из чисел ζk из предыдущего уравнения. Куммер впервые применил теорию групп к теории чисел. На основе этого немецкому математику удалось доказать, что существуют некие простые числа, которые не являются делителем числа, называемого числом класса идеалов, что служит характеристикой вышеупомянутого продолжения. Такие простые числа называются регулярными простыми числами.