Поколение, следующее за Ферма, потеряло интерес к греческой математике, исключая разве что Евклида, работы которого до самого XX века были примером строгости и красоты в геометрии. Его «Начала» — наиболее часто издаваемая книга после Библии.
Но случай с Евклидом — это редкость. С конца XVII века греческая наука превратилась в музейный экспонат. С тех пор математики не смотрели назад, они всегда думали о будущем и о том, что они сами создают. Ферма был одним из последних, кто наслаждался традицией прошлого, и одним из тех, кто запер это прошлое и создал новый мир, наряду с другими великими математиками своего времени. Любая традиция сопротивляется смерти, и даже одна из ключевых работ по физике — «Математические начат натуральной философии» Ньютона — имела «греческую» форму. Но ее можно назвать лебединой песней античной науки. Со смертью Ферма в 1665 году греческая математика уже сменилась современной. После него ни один великий математик не озадачивался тем, чтобы восстановить традицию античности.
В нашей книге мы рассмотрим историю этой революции. Первые две главы посвящены теореме, которая сделала Ферма известным и в течение трех с половиной веков подстегивала математиков на создание невероятных конструкций с единственной целью — решить его дьявольскую головоломку. Это захватывающая история. В остальной части книги мы расскажем о другом вкладе Ферма в науку, абсолютно незаслуженно оставшемся в полутьме.
Речь пойдет о его вкладе в теорию чисел, а также о революционном прорыве, ставшем возможным благодаря французскому ученому, — аналитической геометрии, с помощью универсального языка алгебры навсегда изменившей подход к математике. Кроме того, в наше повествование включены предшественники анализа бесконечно малых — методы максимумов и минимумов Ферма, касательных, квадратур и спрямлений. Мы проанализируем эпистемологические препятствия (термин французского философа Гастона Башляра), которые помешали Ферма открыть собственно анализ. Наконец, мы остановимся на его роли в зарождении теории вероятностей и на его вкладе в физику в виде экстремального принципа, носящего его имя.
Здесь будет рассказано о достижениях этого великого мыслителя, но также будут затронуты и причины, по которым он был забыт. Иногда они связаны просто со случайностями, превратностями судьбы, но в других случаях роль сыграла и сама личность Ферма, например его боязнь публикации трактатов под своим именем. В то же время он ждал от коллег признания благодаря своим письмам, полным задач, которые, как утверждал ученый, он решил, но они разочаровывали его корреспондентов отсутствием конкретики. Идеи Ферма почти всегда падали на плодородную почву, но были отделены от его имени, и, таким образом, он оставался в тени. Жизнь этого ученого, в которой так мало примечательных событий, по-настоящему отражается в его работе, демонстрируя нам личность потрясающего человека.
1601 Родился 20 августа в Бомоне, Франция.
1620 Изучал право в Тулузе в течение пяти лет.
1625 Четыре года прожил в Бордо, где общался с французским математиком Жаном де Бограном.
1631 Закончил обучение в Орлеане 1 мая. Получил должность советника в парламенте Тулузы.
1636 Первое письмо философу Марену Мерсенну. Создал трактат об аналитической геометрии «Введение к теории плоских и пространственных мест». Разработал свой метод максимумов и минимумов.
1637 Формулировка Великой теоремы.
1638 Начало полемики с «соперником» Рене Декартом о методе максимумов и минимумов и его применении к касательным.
1640 Обнародование малой теоремы Ферма.
1641 Охлаждение отношений с Бернаром Френиклем и Пьером Брюларом.
1643 Объяснил основы своего метода в «Аналитическом исследовании», одной из самых важных его ученых записок.
1652 Заболел чумой. Друг ученого Бернар Медон ложно объявил о его смерти.
1654 Поддерживал переписку с Блезом Паскалем, в результате чего были заложены основы теории вероятностей.
1657 Полемика с Джоном Уоллисом и Уильямом Браункером об уравнении Пелля.
1658 Написал «Трактат о квадратурах», в котором расширил применение своего метода. Начал споры о «Диоптрике» с картезианцем Клодом Клерселье.