Выбрать главу

Но Уайлс держался практически в полном молчании, периодически все-таки публикуясь по вопросам, очень отдаленным от его реального исследования. Ученый быстро продвигался в своей работе, и некоторые его результаты по теории групп были достойны того, чтобы принести ему известность; однако он боялся, что кто-нибудь узнает, чем он на самом деле занимается, и вынудил себя молчать. Вскоре коллеги начали думать, что карьера Уайлса закончена и его математический гений исчерпан. Ничего удивительного в их выводах не было, поскольку большинство математиков вносят свой вклад в науку еще в молодости.

Молчание Уайлса привело к тому, что ему пришлось проглотить обиду, когда, едва лишь через два года после начала его работы, другой исследователь по имени Иоичи Мияока объявил, что доказал Последнюю теорему Ферма. Мияока основывался на стратегии (наследнице стратегии Фальтингса), вроде бы отличной от стратегии Уайлса, однако в глубине аналогичной тому, что он пытался сделать. Таким образом была сформулирована гипотеза Мияоки, которая, так же как и гипотеза Таниямы — Симуры, была связана с Великой теоремой; если гипотеза Мияоки истинна, то истинна и теорема Ферма. К счастью для Уайлса, сам Фальтингс быстро нашел ошибку в доказательстве Мияоки, и, несмотря на все усилия по ее устранению, доказательство провалилось всего лишь через два месяца. Уайлс вздохнул с облегчением и продолжил работать.

История того, как Уайлс нашел доказательство, очень сложна: в нем более ста страниц. Стоит выделить некоторые аспекты этого доказательства. Уайлс так же, как и Куммер, воспользовался теорией групп.

Изначальный подход Уайлса основывался на теории Ивасавы, от которой он отказался, поскольку она не давала результатов, заменив ее так называемым методом Колывагина — Флаха. Интересно отметить, что теория Ивасавы возникла как обобщение работы Куммера. В математике есть связи, которые постоянны в истории.

Как мы уже говорили, математик, пытающийся доказать сложную теорему, пользуется различными стратегиями, пока в момент озарения не находит нужную — ту, что способна снести стену. Сам Уайлс сравнивал свою работу с входом в темную комнату, где он постепенно узнает о мебели и вещах, которые в ней существуют, пока, наконец, не находит выключатель и не заполняет комнату светом.

Дело в том, что доказательство, изложенное Уайлсом в знаменитой серии лекций, прочитанных 23 июня 1993 года в Кембридже, было основано на его второй стратегии, Колывагина — Флаха, поскольку он отбросил за бесполезностью изначальный метод. Однако это доказательство было опровергнуто, поскольку в нем содержалась роковая ошибка.

Французский математик Огюстен Лум Кошм доказал теорему Ферма о прямоугольных числах в 1812 году.

В 1843 году Эрнст Куммер утверждал, будто доказал Последнюю теорему Ферма и выяснил, что она выполняется для регулярных простых чисел.

Эндрю Уайлс опубликовал в 1994 году окончательное доказательство Последней теоремы Ферма.

Уайлс натолкнулся на ту же самую стену, что и Коши, Ламе, Куммер и Мияока. Все они были убеждены в своем успехе, однако были разбиты в самый последний миг. Этот последний шаг, эта последняя карта не давалась ни одному из математиков. И теперь, казалось, она не далась и Уайлсу. Так же как и предыдущим исследователям, Уайлсу было предназначено стать очередным именем в длинном ряду провалов, который длился 350 лет.

Но это не было очевидно в начале, когда математику устроили овацию в конце лекции. Ошибка всплыла при подготовке к публикации, во время очень серьезного процесса, известного как "рецензирование". Как правило, во время рецензирования формулируются вопросы и сомнения, на которые автор должен ответить. На одно из таких сомнений Уайлс ответить не смог. Его ошибку, которую нашел американский математик Ник Катц, невозможно объяснить неспециалисту. Согласно самому Уайлсу, даже профессиональному математику потребовалось бы два или три месяца, чтобы понять ее. В конце концов ученый был вынужден признать правоту Катца: он ошибся в такой тонкости, что ее было практически не видно.

Это и была цена самоизоляции Уайлса. Открытое обсуждение с коллегами хода исследования является одним из неписаных правил в математической практике. Подобное обсуждение позволяет обнаружить возможные ошибки, обсудить методы, сопоставить идеи. Но есть и обратная сторона: если кто-то тебе что-то подсказывает, в публикуемой статье ты должен вынести ему благодарность или даже включить в число соавторов. Вот почему такие статьи часто подписаны десятками авторов.