Анализ в том виде, в каком им занимались греки, также прижился у арабских алгебраистов и ренетов. В алгебре уравнения в основном инвертируются. Если согласно неким правилам преобразовать уравнение, то всегда можно осуществить и обратную процедуру. Например, мы можем перейти от записи a2 - b2 к записи (a + b)(a - b), равно как и совершить обратный переход. Так происходит потому, что два равных между собой выражения свободно взаимозаменяемы. Виет осознал это и открыл, что если основывать анализ на алгебре, пользуясь только действиями с уравнениями и тождествами, то доказательства автоматически будут истинными. Вышесказанное привело его к революционному утверждению о том, что анализ и алгебра — это одно и то же; он назвал это аналитическим искусствам.
Теперь имелись общие методы работы с уравнениями, и задачи можно было решать в два этапа: постановка, то есть перевод задачи в область символической алгебры в виде уравнения, и алгебраические действия для нахождения решения. Этим занимаются на уроках математики в школе. Таким образом, вместо того чтобы делать акцент на решении частного уравнения, как поступали реисты, Виет сосредоточился на правилах действий, совершаемых над уравнением: сложении членов в обеих частях, вычитании членов, возведении в степень, извлечении корней, умножении или делении. Кроме того, он искал общие виды операций, которые зависели бы только от структуры уравнения. Значительная часть трактата Виета посвящена классификации тождеств, помогающих осуществлять такие действия.
Если мы видим выражение 3 + 2, то наша естественная реакция состоит в том, чтобы, как делали реисты, осуществить сложение и поставить 5. Но при этом мы теряем структуру исходного выражения, сам факт того, что это сложение. Следовательно, мы не можем рассуждать в общем виде о сложении. Символическая алгебра позволяет нам рассуждать о структурах. Можно сказать, что символическая алгебра сосредотачивается на синтаксисе уравнения, забывая о его содержании и значении до получения конечного решения. В то же время алгебра Виета предполагала, что объекты, с которыми мы работаем (константы и неизвестные), необязательно должны быть числами. Они могут быть чем угодно — углами в тригонометрии, геометрическими элементами, — всем, к чему применимы сложение, умножение, возведение в степень и так далее. Алгебра, которая ранее была только ответвлением арифметики, где акцент делался на решении числовых задач, теперь превращается в универсальный язык математики.
Математика — это наука о порядке и мере, о красивых и простых цепочках рассуждений.
Рене Декарт
В данном месте нашего повествования должно стать очевидным, какое значение имела для нашего героя работа Виета, с которой Ферма познакомился в Бордо. Действительно, мы уже наблюдали у Ферма тенденцию идти от частного к общему, анализировать структуру уравнений, решающих целый класс задач, — преимущество, которое он отдавал общему методу перед конкретным решением локальной задачи. Виет не только предлагал методы и решения, он создал математическую программу, доведенную Ферма до последних выводов. Но он был не один. Другой великий мыслитель, Рене Декарт, пришел к таким же заключениям. Они втроем — Виет, Декарт и Ферма — создали методы современной математики, навсегда разорвав их связь с элегантными построениями Евклида и древнегреческих геометров. Туда, где раньше царствовали чертежи, построенные с помощью линейки и циркуля, теперь пришли алгебраические действия, совершаемые каждый раз над все более необычными объектами. Алгебра действительно превратилась в их руках в преимущественный способ математических рассуждений.
Очевидно, что Ферма многим обязан в математике Виету, однако остается спорным, до какой степени последний повлиял на Декарта. Некоторые историки, например Богран, предполагают знакомство Декарта с работами Виета, другие считают, что Декарт, по его же собственным словам, пришел к своим результатам независимо. Но так как он систематизировал лучше Виета, его запись оказалась намного более ясной (вспомним, что понятная запись в математике может озарить, в то время как неясная способна сбить с мысли). Также его теория уравнений была настолько выше теории Виета, что через одно поколение она полностью победила, оставив последнего в забвении. Там, где Виет пользовался изнурительными казуистиками, очень соответствующими образу мысли адвоката, Декарт рассуждал как философ.