Выбрать главу
МЕТОДИКА ДВУХ ПОЗДНИХ ТРАКТАТОВ ФЕРМА

В ·Трактате о квадратурах" используется значительная часть прежних открытий Ферма: его метод максимумов и минимумов, который помогает разделить кривую на отрезки, монотонно возрастающие или убывающие; аналитическая геометрия, позволяющая осуществлять действия с этими отрезками; и, конечно же, прием приравнивания. Как и можно было ожидать, у него получился аналитический трактат. Наоборот, ‘Трактат о спрямлении" методически очень отличается от всего, что Ферма написал к тому времени. Действительно, тулузец отдалился от своего аналитического метода и применил греческий синтетический метод, которым пользовались такие классики, как Евклид. При этом его аналитическое рассуждение оказалось скрыто. Почему он так сделал — загадка, но, возможно, это было связано с традициями. Трудоемкость, которую предполагало написание подобной работы, сравнимая с работой Ньютона в ‘Началах", в свою очередь, могла бы объяснить, почему он не пользовался этим подходом ни в каком другом своем труде.

В "Трактате о спрямлении" Ферма в ясном виде приравнивает заданный касательный к кривой отрезок DE к дуге FE (см. рисунок). Для приравнивания данный отрезок обязательно должен быть произвольно малым. Говоря в общих чертах, Ферма думал о кривой как о линии, образованной огромным числом очень маленьких прямолинейных отрезков, каждый из которых является касательным к кривой. Сумма длин этих бесконечно малых отрезков дает длину кривой (спрямление).

Следующим шагом было нахождение суммы длин таких отрезков, и здесь Ферма использовал прием, именуемый сегодня "изменением переменной". Это был гениальный скачок: изменение переменной определяло обычную параболу (второй степени), квадратура которой равна значению разыскиваемой нами суммы. Другими словами, Ферма превратил проблему спрямления в проблему квадратуры, уже известную и решенную им самим. Не довольствуясь достигнутым, он определил бесконечное семейство кривых, основанных на обобщенной параболе, и доказал, что если она спрямляема, то и все остальные тоже. Он сделал это, доказав, что всегда можно построить обычную параболу, которую мы только что упомянули. Ему не только удалось спрямить кривую; он доказал, что число спрямляемых кривых бесконечно.

Но именно этот шаг сведения спрямления к квадратуре снова помешал Ферма увидеть, что результат его спрямления является еще одним уравнением. Он даже не осознал, что почти дотрагивается до основных принципов анализа. Ему удалось начать думать о бесконечно малых, что было важным шагом в открытии анализа, но это не только не привело Ферма к пересмотру своей работы о касательных и максимумах, но он также не смог истолковать свои результаты как уравнения: он думал о подкасательных и площадях.

Годами позже (и частично благодаря работам Ферма) Лейбниц и Ньютон независимо пришли к основным идеям анализа: использованию бесконечно малых и основополагающей идее того, что операция вычисления углового коэффициента касательной к кривой, заданной уравнением А, дает в результате уравнение В, а операция нахождения квадратуры кривой В дает в результате уравнение А. Другими словами, нахождение угловых коэффициентов и квадратур, дифференцирование и интегрирование являются обратными операциями, как сложение и вычитание. Это основная теорема анализа.

Как стало возможным, что Ферма не понял, насколько важное открытие находится рядом? Это ужасно досадно. Так же как и рыцарь Персеваль, Ферма увидел Святой Грааль, но не смог узнать его, что лишило его лавров первооткрывателя. В любом случае, великое открытие, которое удалось сделать Лейбницу и Ньютону, — еще один пример чудесных мостов между внешне непохожими проблемами. С подобным, как мы видели, столкнулись Ферма и Декарт при создании аналитической геометрии, а также Танияма, Симура и Уайлс при работе над гипотезой, которая носит имя первых двух.

И здесь мы почти закончили нашу историю.

ГЛАВА 6

Вероятность и принцип Ферма

Вклад Ферма в математику не исчерпывается большими областями, о которых мы говорили до этого момента, — теорией чисел, а также аналитической геометрией и анализом. Наряду с Паскалем он также стоял у истоков теории вероятностей. Свои же последние годы ученый посвятил полемике с Декартом вокруг оптики.