Выбрать главу

Квантовые фантазии могут быть забавными, но конечная цель новой физики и этой книги серьезна. Она состоит в том, чтобы помочь нам иметь дело с нашей повседневной реальностью.

Двойственность волна-частица и квантовое измерение

Предшествующая базовая информация помогает объяснить пару головоломных вопросов. Подразумевает ли квантовая картина электрона, движущегося волнами вокруг ядра, что заряд и масса электрона размазаны по всему атому? И означает ли тот факт, что свободный электрон распространяется так, как должна распространяться волна согласно теории Шрёдингера, что его заряд теперь размазан по всему пространству? Иными словами, как согласовать волновую картину электрона с тем фактом, что он обладает свойствами локализованной частицы? Ответы на эти вопросы весьма непросты.

Может казаться, что, по крайней мере, волновые пакеты дают возможность ограничивать электрон небольшим пространством. Увы, все не так просто. Волновой пакет, удовлетворяющий уравнению Шрёдингера в данный момент времени, с течением времени должен распространяться.

В некоторый начальный момент мы можем локализовать электрон в крохотной точке, но в течение секунд волновой пакет электрона будет распространяться по всему городу. Хотя первоначально вероятность нахождения электрона в крохотной точке подавляюще высока, всего через несколько секунд становится значимой вероятность появления электрона в любом месте в городе. А если мы будем ждать достаточно долго, электрон может появиться в любом месте во всей стране или даже во всей вселенной.

Именно это распространение волнового пакета способствует непрекращающимся шуткам о квантовой предопределенности среди знатоков. Например, возьмем такой квантово-механический способ материализации рождественской индюшки: приготовьте духовку и ждите — существует ненулевая вероятность того, что индюшка из соседнего магазина материализуется в вашей духовке.

К несчастью для любителя индюшатины, для таких массивных объектов, как индюшка, распространение происходит чрезвычайно медленно. Чтобы материализовать таким образом даже маленький кусочек индюшки, возможно, пришлось бы прождать все время существования вселенной.

А как насчет электрона? Как согласовать распространение волнового пакета электрона по всему городу с картиной локализованной частицы? Ответ в том, что мы должны учитывать в своих вычислениях акт наблюдения.

Если мы хотим измерить заряд электрона, мы должны уловить его с помощью чего-то вроде облака пара в конденсационной камере. В результате этого измерения мы должны допускать, что волна электрона схлопывается, так что теперь мы способны видеть путь электрона через облако пара (рис. 10). Согласно Гейзенбергу, «путь электрона начинает существовать только когда мы его наблюдаем». Производя измерение, мы всегда обнаруживаем электрон, локализованный в качестве частицы. Можно говорить, что наше измерение редуцирует волну электрона к состоянию частицы[11].

Рис. 10. Трек электрона в облаке пара

Когда Шрёдингер предлагал свое волновое уравнение, он и другие думали, что им, возможно, удалось освободить физику от квантовых скачков — от прерывистости, — поскольку волновое движение непрерывно. Однако корпускулярную природу квантовых объектов было необходимо согласовать с их волновой природой. Поэтому были предложены волновые пакеты. Наконец, с признанием распространения волнового пакета и осознанием того, что именно измерение должно вызывать мгновенное схлопывание размеров пакета, мы видим, что схлопывание должно быть прерывистым (непрерывное схлопывание требовало бы времени).

Кажется, будто не может быть квантовой механики без квантовых скачков. Однажды Шрёдингер посетил Бора в Копенгагене, где он целыми днями протестовал против квантовых скачков. Говорят, что в конце концов он сдался, раздраженно воскликнув: «Если бы я знал, что нужно признавать этот проклятый квантовый скачок, то никогда бы не связался с квантовой механикой».

вернуться

11

Это лишь один из вариантов интерпретации «физического смысла» проблемы измерения. Есть и другие решения, позволяющие избежать «редукции волновой функции» (или «схлопывания» волнового пакета), но все они исходят из допущения реальности дуализма волна-частица. Это лучше всего иллюстрирует знаменитый парадокс «кошки Шрёдингера»: кошку сажают в ящик с механизмом, который по команде «атомных часов», фиксирующих события радиоактивного распада, впускает ядовитый газ. Поскольку события распада непредсказуемы, то с точки зрения квантовой механики до того, как мы проводим измерение (открываем ящик), кошка одновременно жива и мертва. Наиболее радикальный выход из ситуации принадлежит Бору, который предложил считать, что квантовая механика определяет только соотношение между измерениями, и ничего не говорит о реальности квантового объекта между измерениями (так называемая «Копенгагенская интерпретация квантовой механики»). Эта интерпретация буквально означает, что если мы осуществляем определенные экспериментальные процедуры («приготавливаем» квантовый объект), то квантовая механика точно предсказывает результаты измерения этого объекта с помощью других определенных экспериментальных процедур — но не более того. Развитием этого подхода стала предложенная американским физиком Чью и широко применяемая в современной физике теория S-матрицы, согласно которой все происходящее в квантовом мире представляет собой «черный ящик», однако, зная «входные» параметры этого «ящика», можно, используя математический формализм, сходный с формулами для рассеяния абсолютно упругих тел, точно предсказывать его «выходные» параметры. — Прим. пер.