Выбрать главу

Первый наш вопрос состоит в следующем: какое расстояние необходимо пробежать, если стартовать от корзины и перенести в нее по одной все 100 картофелин.

Наша вторая и гораздо более трудная задача касается соревнований между Томом и Гарри. Поскольку Том бегает на 2,04 % быстрее Гарри, он разрешает Гарри выбрать одну картофелину и положить ее в корзину до начала соревнований. Другими словами, чтобы выиграть, Том должен собрать 50 картофелин прежде, чем Гарри сумеет собрать свои оставшиеся 49. На рисунке вы видите, как Гарри кладет выбранную картофелину в корзину. Результат соревнований в значительной мере будет зависеть от того, какую именно картофелину выберет Гарри. Вам предлагается определить, какую картофелину следует выбрать Гарри, чтобы максимально увеличить свои шансы на выигрыш, и каков будет результат соревнований, если сделать правильный выбор.

104

105

Как записать 1906 год в восьмеричной системе счисления?

Дабы показать, насколько трудно бывает неискушенному человеку при решении простой задачи покинуть проторенный путь, я предлагаю вам бросить взгляд на привычную нам десятичную систему счисления. Обычно большинство людей пользуются ею не задумываясь. Они знают, что при сложении столбиком каждую колонку можно заполнять вплоть до 9, а если сумма получается больше 9, то следует перейти в колонку слева. Однако все это далеко не так просто.

Первобытный человек, подобно каждому из нас, учился считать на пальцах обеих рук – вот отсюда и возникла десятичная система счисления. Не исключено, что если бы человек произошел от обезьяны с четырехпалыми конечностями, то нам пришлось бы пользоваться «восьмеричной» системой. С математической точки зрения десятичная система не столь уж и совершенна, для некоторых целей, например, лучше подходит «семеричная» система, где в каждом разряде может стоять любая из семи цифр от 0 до 6. В этой системе 66 означает 6 семерок и 6 единиц, так что если к данному числу прибавить 1, то получится 100, или 49 в десятичной системе.

Дело в том, что, прибавив 1 к 6, мы получили бы 7. Поэтому мы пишем в младшем разряде 0, а в следующий разряд добавляем 1 и получаем там снова 7; так что во втором разряде мы опять записываем 0, а в третьем разряде пишем 1. В результате и получается число 100, которое в десятичной системе записывается как 49. Аналогичным образом 222 в десятичной системе запишется как 114: две единицы, две семерки и дважды по 49.

Представьте, что нашими предками были четырехпалые обезьяны и наши предтечи считали до восьми и ничего не знали о девятках и десятках; как бы мы тогда в восьмеричной системе записали 1906 год? Эта задача поможет вам понять некоторые элементарные принципы, лежащие в основе перехода от одной системы счисления к другой.

106

Ежегодный пикник

Компания отправилась на большой ежегодный пикник. В каждом экипаже находилось одинаковое число пассажиров. На полпути вышли из строя 10 экипажей, так что в каждый оставшийся экипаж пришлось пересесть по одному лишнему пассажиру.

На обратном пути из строя вышло еще 15 экипажей; теперь в каждом экипаже ехало на 3 пассажира больше, чем их было, когда компания поутру тронулась в путь. Сколько человек участвовало в ежегодном пикнике?

107

Сколько монахинь проживало в монастыре и как они размещались?

Задачу о монахинях из монастыря Монте-Маладетта можно встретить почти во всех старых сборниках головоломок, но она очень примитивна. Я помню, что в свое время ее ответ просто разочаровал меня. Говорили об испанском происхождении этой головоломки, якобы она основана на историческом эпизоде. Недавно мне в руки попал сборник старых испанских сказаний, в одном из которых я нашел краткое упоминание о монастыре Монте-Маладетта, расположенном в горном массиве Пиренеев, носящем то же название. Речь там шла о захвате этой части страны французами, которые в конце концов были изгнаны.

Прямое отношение к головоломке имела, однако, та часть текста, где говорилось: «Многих монахинь франки увели с собой, видно, отсюда и пошла известная задача о монахинях монастыря Монте-Маладетта». Поскольку никаких письменных свидетельств о головоломке не сохранилось, а ее популярный вариант весьма сомнителен из-за двойственности решения, я беру на себя смелость представить ее в форме, сохраняющей дух задачи, но свободной от неоднозначности решения.