Выбрать главу

[Если бы свинья бежала с той же скоростью, что и человек, или быстрее, то, пользуясь правилом Лойда, можно легко показать, что Тому никогда не удалось бы схватить ее. Но если скорость человека превосходит скорость животного, то свинью можно схватить всегда. Путь человека дает один из простейших примеров так называемой «линии погони», изучение которой составляет интересный раздел того, что можно было бы назвать «развлекательным анализом».[31]М. Г.]

146. Сорок лет назад Бидди было 18 лет, а сейчас ей 58.

147. У Джона и Мэри должно было быть 300 цыплят, которым хватало корма на 60 дней.

148. Мячик пройдет расстояние в 218,77777… футов, то есть в 218 футов 9 1/3 дюйма.

149. На рисунке показан путь, при котором Клэнси сможет пройти мимо всех домов.

150. Существует бесконечно много способов, позволяющих разделить греческий крест на части, из которых удается сложить правильный квадрат. На рис. 1 показан один из них. Самое поразительное что если вы проведете любые два прямых разреза, параллельные данным, то результат не изменится. Из получившихся при этом четырех частей всегда можно сложить квадрат!

Ответы на следующие вопросы вы видите на рис. 2 и 3.

151. Если леди купила x шнурков, то она должна была купить 4x коробочек с булавками и 8x: платков. Сумма квадратов этих величин равна 3,24 доллара, откуда x = 2. Таким образом, леди купила 2 шнурка, 8 коробочек с булавками и 16 платков.

152. Бутылку и щетку можно переставить за 17 ходов, действуя следующим образом:

1) бутылка,

2) щетка,

3) утюг,

4) бутылка,

5) перечница,

6) мышеловка,

7) бутылка,

8) утюг,

9) щетка,

10) перечница,

11) утюг,

12) бутылка,

13) мышеловка,

14) утюг,

15) перечница,

16) щетка,

17) бутылка.

153. Поскольку колеса на внешней стороне круга вращаются вдвое быстрее колес на внутренней стороне, длина внешней окружности должна вдвое превышать длину внутренней окружности. Следовательно, 5 футов между внутренними и внешними колесами должны равняться половине радиуса внешней окружности. Другими словами, диаметр внешней окружности равен 20 футам, а ее длина составляет 20π, или около 62,832 фута.

154. Мисс Покахонт 24 года, а маленькому Капитану Джону 3 года.

155. Покупатель приобрел бочки с маслом в 13 и 15 галлонов, заплатив по 50 центов за галлон, и бочки с уксусом в 8, 17 и 31 галлон, заплатив по 25 центов за галлон. При этом осталась бочка в 19 галлонов, которая может содержать либо масло, либо уксус.

156. Каждая следующая цена составляет 2/5 предыдущей, так что после очередного снижения шляпа будет продаваться за 51,2 цента.

157. На верхнем рисунке показаны пути пяти стражей, а на нижнем отмечено, как тюремщик добирался до черной камеры, сделав всего лишь 16 поворотов.

158. Пять мальчиков вылетят, если вместо числа 13 взять 14, а счет начинать по-прежнему с девочки без шляпки, двигаясь по часовой стрелке.

159.Ответ ясен из рисунка.

160. [Пусть х – стоимость купленной шляпы Рубена, а у – стоимость его пиджака. Шляпка, купленная Синтией, также стоит у, а ее платье х – 1. Мы знаем, что х + у = 15. Поэтому если 15 долларов, которые они истратили на шляпы, разделить на две части, из которых одна в полтора раза больше другой, то мы получим, что новые цены шляп составляют соответственно 6 и 9 долларов. Исходя из условий задачи, мы можем составить следующее уравнение:

9 + х – 1 = 6 + 15 – x.

Отсюда х = 6,5 доллара – цена, которую Рубен заплатил за шляпу. Значит, за пиджак он заплатил 8,5 доллара, а Синтия заплатила 8,5 доллара за шляпу и 5,5 доллара за платье. Общая сумма, истраченная парой, составляет 29 долларов. – М. Г.]

161. В стаде мисс Ку-Ку было 8 овец. Изгородь из 8 столбов, расположенных в виде квадрата, ограничивает поле той же площади, что и продолговатая изгородь из 10 столбов, у которой на длинной стороне находится 5, а на короткой 2 столба.

вернуться

31

Линия погони фигурирует отнюдь не только в занимательных задачах, но и в таком важном разделе прикладной математики, как теория оптимального управления. – Прим. перев.