224. Миссис О'Нейл потратила на бананы 33,6 доллара. На эти деньги она могла купить по 48 гроздей красных и желтых бананов, а всего – 96 гроздей. Но поделив всю сумму пополам и затратив 16,8 доллара на красные и 16,8 доллара на желтые бананы, она могла бы купить 42 грозди красных и 56 гроздей желтых бананов, то есть всего 98 гроздей.
225. Джоко движется от окна к окну в следующем порядке: 10, 11, 12, 8, 4, 3, 7, 6, 2, 1, 5, 9. Этот путь проходит по широкому пространству между нижним и средним рядами окон только дважды.
226. Головоломку можно решить за 8 ходов следующим образом: Тафт перепрыгивает последовательно через Нокса, Джонсона, Лаффолета и Кэннона. Грей перепрыгивает через Фербенкса. Хьюг перепрыгивает через Брайена. Грей перепрыгивает через Хьюга. Тафт перепрыгивает через Грея.
[Если мы будем рассматривать серию последовательных прыжков одного человека как один ход, то в решении Лойда требуется 5 ходов. Однако задачу можно решить всего за 4 хода. – M Г.]
227. Ответ ясен из рисунка.
228. Кость должна выпасть единицей вверх. Если прибавить сюда 4 на боковой грани, то это дает сумму, равную 5. Сумма оставшихся чисел на боковых гранях (5, 2 и 3) равна 10, что дает другому игроку преимущество в 5 очков.
В шестеричной системе число 109 778 запишется как 2 204 122. Цифра справа представляет единицы, следующая цифра дает число шестерок, третья справа цифра означает число «тридцатишестерок», четвертая цифра показывает число «порций» по 216 и т. д. Эта система основана на степенях 6 вместо степеней 10, как это имеет место в десятичной системе счисления.
229. Задачу плотника можно решить, распилив доску на 3 части, как показано на рисунке.
230. Дети купили 3 шоколадные конфеты, 15 шоколадных драже и 2 леденца.
231. С первого взгляда кажется, что общий улов может выражаться любым числом от 33 до 43, поскольку А может получить от 0 до 11 рыб, и доли других становятся очевидными. Однако, поскольку в итоге каждый мальчик получил одинаковое число рыб, ясно, что общая сумма должна равняться 35 или 40. Если мы возьмем последнее значение, то обнаружим, что выполнены все условия. А поймал 8 рыб, В – 6, С – 14, D – 4 и E -8 рыб. После того как В, С и D объединили свой улов и взяли по одной трети, у каждого из них оказалось по 8 рыб. Независимо от того, как мальчики объединяли и делили свою добычу, доля каждого останется равной 8 рыбам.
232. Ответ показан на рисунке.
233. Пирог тетушки Мэри можно разрезать на 22 части, как показано на рисунке.
[Эта классическая задача представляет дополнительный интерес для тех, кого интересует формула, по которой можно вычислять максимальное число частей при заданном числе разрезов. – М. Г.]
234. Шелк продавался по цене 5 центов за моток, а шерсть – по 4 цента за моток.
235. В начале пути следы левой и правой ног Санта Клауса легко различимы. Проследив за их последовательностью, вы обнаружите, что след левой ноги Санта Клауса оказывается там, где должен быть след правой. Другими словами, Санта Клаус где-то сделал лишний шаг. Наиболее подходящее объяснение состоит в том, что он пробежал по первому маленькому кругу дважды, ступая точно в свой след.
236. Телль выбивает 100 очков, попав дважды в 11 и 6 раз в 13. Тень столбика от сетки у ноги Телля равна половине высоты столбика. Тень столба имеет в длину 35 ярдов, так что сам столб должен быть высотой в 70 ярдов, или 210 футов.
237. [У С. Лойда нет ответа на эту трудную задачу. Лучший способ поскорее закончить путешествие, согласующийся с подходом к аналогичным задачам Генри Э. Дьюдени, по-видимому, следующий.
Самый медленный пешеход С всю дорогу едет на тандеме. Вместе с А, самым быстрым пешеходом, он проезжает 31,04 мили, пока В идет пешком. Затем А слезает с велосипеда, а С возвращается, подбирает В в месте, расположенном в 5,63 мили от старта. Оставшуюся часть пути В и С проезжают на тандеме, прибывая в конечный пункт одновременно с А. Общее время путешествия составит чуть менее 2,3 часа.
Задачу можно решить алгебраическим путем, обозначив через х расстояние, пройденное 2? а через у расстояние, пройденное А. Приравнивая время, за которое В проходит х, ко времени, за которое велосипед доезжает до места высадки А и возвращается к В, мы получим одно уравнение, Второе уравнение удается получить, приравнивая время, за которое А проходит у, ко времени, за которое велосипед проделывает остальную часть путешествия. Мы решаем эти два уравнения, а остальное уже очевидно. – М. Г.]