Выбрать главу

1/x – 1/2,5x = 6

Отсюда х = 0,1, так что Дженни затратила 4 мин, а Мод – 10 мин. – М. Г.]

252. [С. Лойд не приводит ответа к этой задаче, но ее легко решить алгебраически. Пусть х – расстояние от лагеря полярников до невесты, у – время пути туда и z – время обратного пути. Тогда мы знаем, что х/у = 5, x/z = 3 и y + z = 7. Из этих уравнений мы находим, что в оба конца путешественник проделал 26 1/4 мили. – М. Г.]

253. [Падая с высоты в 20 футов, тело развивает в конце пути скорость 35,777 фута в секунду (квадрат скорости падающего тела равен удвоенному произведению ускорения на высоту). Тело в 30 фунтов, падая с такой высоты, разовьет, следовательно, кинетическую энергию, равную 1073,31. Суммарная масса козлов составляет 111 фунтов. Значит, для того чтобы развить «черепо-ломное» количество движения 1073,31, они должны двигаться с относительной скоростью не меньшей 9,669 фута в секунду. – M. Г.]

254. Сторож, жена, младенец и собака должны спасаться следующим образом:

1) спустить младенца,

2) спустить собаку, поднять младенца,

3) спустить сторожа, поднять собаку,

4) спустить младенца,

5) спустить собаку, поднять младенца,

6) спустить младенца,

7) спустить жену, поднять всех остальных,

8) спустить младенца,

9) спустить собаку, поднять младенца,

10) спустить младенца,

11) спустить сторожа, поднять собаку,

12) спустить собаку, поднять младенца,

13) спустить младенца.

[Это упрощенный вариант одной задачи, предложенной Льюисом Кэрроллом. – М. Г.]

255. Орел закончит путешествие за 39 своих полетов от восхода до заката (таких, какими они видны орлу). Но за это время Земля повернется 39 1/2 раз, так что в Вашингтоне между отлетом и возвращением орла пройдет 39 1/2 суток.

256. На печати царя Соломона можно обнаружить 31 равносторонний треугольник.

257. Диаметр круговой дорожки не влияет на ответ. В момент встречи заяц прошел 1/6 дистанции, а черепаха – 17/24. Следовательно, черепаха двигалась в 17/4 раза быстрее зайца. Зайцу предстоит пройти теперь 5/6 дистанции по сравнению с 1/6 для черепахи, так что он должен бежать в 5 раз быстрее, чем черепаха, то есть в 85/4 раза быстрее, чем раньше.

258. Ответ показан на рисунке.

259. На рисунке показано, каким образом можно соединить В и А, истратив 233 дюйма провода.

260. [С. Лойд приводит лишь ответы на обе части задачи, но не объясняет их получения.

Первую часть можно решить следующим образом. Пусть длина колонны и время, за которое армия проходит эту длину, равно 1. Скорость движения армии также будет равна 1. Пусть далее х – расстояние, которое проезжает курьер в обе стороны, а также его скорость. На пути в голову колонны его скорость относительно колонны будет равна х – 1. На обратном пути его относительная скорость будет равна х + 1. По отношению к колонне на пути туда и обратно всадник должен преодолеть расстояние, равное 1, и весь этот путь совершается за время, равное 1. Поэтому мы можем составить следующее уравнение: 1/ (x-1) + 1/(x+1) = 1 которое легко преобразовать к виду х2 – х = 0.

Поскольку х – положительно, то

Умножив эту величину на 50, мы и получим ответ в милях, равный приближенно 120,7. Другими словами, курьер проезжает расстояние, равное длине колонны плюс та же самая длина, умноженная на квадратный корень из двух.

Аналогичным образом можно решить и вторую часть задачи. В этом случае скорости курьера относительно движущейся армии будут соответственно равны: х-1 на пути вперед, х + 1 на пути назад и

на двух диагональных участках. (Поскольку место, с которого курьер начнет свой путь, роли не играет, мы ради простоты предполагаем, что он начинает свой путь в конце заднего ряда, а не в его середине.)

Как и прежде, каждый участок пути курьера относительно каре равен 1, а поскольку все четыре участка он проезжает за единичное время, мы можем записать:

Это уравнение можно записать в виде х43– 2x2+ 4х + 5 = 0, и только один его корень, равный приближенно 4,18112, удовлетворяет условиям задачи. Умножив эту величину на 50, мы получим ответ, равный 209,056 мили. – М. Г.]

261. Ответ показан на рисунке.

262. Зная, что на каждой полке содержится ровно 20 кварт, начнем решать задачу, убрав 6 маленьких банок с каждой из двух нижних полок. У нас остаются 2 большие банки на средней полке и 4 средние банки на нижней полке, откуда видно, что 1 большая банка содержит столько же джема, сколько и 2 средние.