Выбрать главу

269. Десять монет можно расположить так, как показано на рисунке, в результате чего получится 16 рядов с четным числом монет.

270. [Если мы через х обозначим деньги миссис Смит, а через у – деньги ее супруга, то цена рощи окажется равной у/3, а также х/4. А нам известно, что 3х/4 +у=5000 и2у/3 + х=5000.

Из этих уравнений мы находим, что у мистера Смита было 2500 долларов, а у его жены – 3333 1/3 доллара, отсюда стоимость рощи составляет 833 1/3, доллара. – М. Г.]

271. Кот Виттингтона может схватить всех мышей, двигаясь по пути А – 4 – С – 1 – Y – 5 – 2 – 2 – 6 – X – 3 – Z.

Если часы бьют 6 раз за 6 с, то интервал между двумя ударами составляет 11/5 с. Тогда, чтобы пробить 11 раз, требуется 10 таких интервалов, на что уйдет 12 с.

272. [Пусть х – стоимость содержания. Мы можем составить уравнение х-34 = 13 = 1/4 – х, откуда х – 62 2/3. Мы вычитаем отсюда доход в 34 доллара и находим, что потери составили 28 2/3 доллара. – М. Г.]

273.Как Маленькая Пастушка сумела сделать из 8 брусков 3 квадрата одинаковых размеров, показано на рисунке.

274. Большой участок был разделен на 18 меньших участков.

275. Передвиньте В и С на правый край шеренги рядом с девочкой, которая держит барабан. Заполните брешь с помощью Е и F. Заполните брешь с помощью H и В. Заполните брешь с помощью А и Е.

276. Билл Джонс получил 8836 долларов, его жена Мэри – 5476 долларов, а их сын Нед – 2116 долларов. Хэнк Смит получил 16 129 долларов, его жена Элизабет – 12 769 долларов, а их дочь Сьюзен – 9409 долларов. Джейк Браун получил 6724 доллара, его жена Сара – 3364 доллара, а их сын Том, черная овца в стаде, только 4 доллара.

[Каждое из этих чисел представляет собой, разумеется, точный квадрат – условие, введенное в задачу посредством конвертов с разложенными по ним деньгами. – М. Г.]

277. У Продавца было 3 мальчика и 3 девочки. Каждый из них получил по одной булочке, которые продавались по 2 штуке на пенни, и по 2 булочки, которые шли по цене 3 штуки на пенни.

278. Билл Лежебока работал 16 2/3 дня и прогулял 13 1/3 дня.

279. [С. Лойд не приводит ответа на эту головоломку. Расположить на рисунке шашки можно довольно легко. Если мы представим себе, что кружки сделаны из дерева и соединены веревкой, то мы можем развернуть веревку в большую окружность, на которой кружки будут идти в следующем порядке: 1–3 – 5–7 – 9 – 11–13 – 2–4 – 6–8 – 10–12. Теперь уже легко понять, как следует расставлять шашки. Допустим, что первую шашку мы поставили на 13. Следующую шашку нужно поместить на 4 или 9, а затем сдвинуть ее на 11 или 2, где она окажется по соседству с 13 в приведенной выше последовательности. Третью шашку следует поместить на такой кружок, чтобы после передвижения она оказалась по соседству с любым концом ряда уже расположенных шашек. – М. Г.]

280. Если мы обозначим через х длину моста в футах, то корова окажется в (1/2х-5) футах от одного его конца ив (1/2х-5) футах от другого. Поезд находится в футах от ближайшего конца.

Корова пробегает расстояние в (х/2-5) + (х/2 + 4 3/4) за то же время, за которое поезд проходит (2х – 1) + (3х– 1/4). Эти два расстояния равны соответственно (х-1/4) и 5(х-1/4), откуда ясно, что поезд движется в 5 раз быстрее коровы. Поэтому мы можем написать: 2x-1=5(x/2 – 5).

Отсюда х, длина моста, равна 48 футам. В этой части задачи совсем не требуется знать скорость поезда. Эта скорость нужна лишь для того, чтобы определить скорость коровы. Поскольку поезд шел со скоростью 90 миль в час, то корова бежала со скоростью 18 миль в час.