Сu(ОН)2 + 2Н+ + 2Сl¯ = Сu2+ + 2Сl¯ + 2Н2O
Сu(ОН)2 + 2Н+ = Сu2+ + 2Н2O
*Гидролиз – обменная реакция между веществом и водой без изменения степеней окисления атомов.
1. Необратимый гидролиз бинарных соединений:
Mg3N2 + 6Н2O = 3Mg(OH)2 + 2NH3
2. Обратимый гидролиз солей:
а) Соль образована катионом сильного основания и анионом сильной кислоты:
NaCl = Na+ + Сl¯
Na+ + Н2O ≠ ;
Сl¯ + Н2O ≠
гидролиз отсутствует; среда нейтральная, рН = 7.
б) Соль образована катионом сильного основания и анионом слабой кислоты:
Na2S = 2Na+ + S2-
Na+ + H2O ≠
S2- + Н2O ↔ HS¯ + ОН¯
гидролиз по аниону; среда щелочная, рН >7.
в) Соль образована катионом слабого или малорастворимого основания и анионом сильной кислоты:
ZnCl2 = Zn2+ + 2Сl¯
Сl¯ + H2O ≠
Zn2+ + Н2O ↔ ZnOH+ + Н+
гидролиз по катиону; среда кислотная, рН < 7.
г) Соль образована катионом слабого или малорастворимого основания и анионом слабой кислоты:
NH4(CH3COO) = NH4+ + СН3СОО¯
NH4+ + Н2O ↔ NH3 + Н3O+
СН3СОО¯ + Н2O ↔ СН3СООН + ОН¯
гидролиз по катиону и аниону; среда нейтральная, слабо кислотная или слабо щелочная, рН 7, < 7 или >7.
*Среда в растворах кислых солей
1 . Гидрокарбонат-ион:
НСО4¯ + Н2O ↔ Н2СO3 + ОН¯
среда щелочная.
2. Гидроортофосфат-ион:
НРO42- + Н2O ↔ Н2РO4¯ + ОН¯
среда щелочная.
3. Дигидроортофосфат-ион:
Н2РO4¯ + Н2O ↔ НРO42- + Н3O+
среда кислотная.
4. Гидросульфид-ион:
HS¯ + Н2O ↔ H2S + ОН¯
среда щелочная.
5. Гидросульфит-ион:
HSO3¯ + Н2O ↔ SO32- + Н3O+
среда кислотная.
6. Гидросульфат-ион:
HSO4¯ + Н20 = SO42– + Н3O+
среда кислотная.
Окислительно-восстановительные реакции
Окислительно-восстановительные реакции (ОВР) протекают с изменением степеней окисления элементов и сопровождаются передачей электронов.
Степень окисления – условный заряд атома элемента, который рассчитывают, исходя из предположения ионного строения вещества.
Для молекулы сумма степеней окисления атомов равна нулю.
Для сложного иона сумма степеней окисления атомов равна заряду иона.
Степени окисления более электроотрицательных элементов отрицательны.
Степени окисления менее электроотрицательных элементов положительны.
Высшие и низшие степени окисления элементов 2-го и 3-го периодов в химических соединениях
Характеристика окислителя и восстановителя
Окислитель принимает электроны, восстанавливается, степень окисления атома-окислителя понижается.
Восстановитель отдает электроны, окисляется, степень окисления атома-восстановителя повышается.
Восстановленные формы некоторых окислителей
HNO3(конц.):
NO3¯ => NO2(г)
HNO3(разб.):
NO3¯ => NO(г)
HNO3(oч. разб.):
NO3¯ => NO4+
Перманганат-ион:
MnO4¯ => Мn2+ (среда кислотная)
МnO4¯ => МnO2 (среда нейтральная)
МnO4¯ => МnO42- (среда щелочная)Дихромат-ион: Cr2O72- => Сr3+ (среда кислотная)
Хромат-ион:
CrO42- => [Сг(ОН)6]3- (среда щелочная)
*Типы окислительно-восстановительных реакцийМежмолекулярные (окислитель и восстановитель входят в состав разных веществ):
Сu + 2H2SO4(конц.) = CuSO4 + SO2 + 2Н2O
Внутримолекулярные (окислитель и восстановитель входят в состав одного и того же вещества):
2КСlO3 = 2КСl + 3O2 (катализатор)
Дисмутация (атом одного и того же элемента и окисляется, и восстанавливается):
Сl2 + Н2O ↔ НСl + НСlO
Конмутация (атомы одного и того же элемента с разными степенями окисления приобретают одинаковую степень окисления):
NH4Cl + KNO2 = N2 + 2H2O + KCl
Электрохимический ряд напряжений металлов (ЭХРН)Восстановительные свойства металлов убывают в ряду слева направо:
Окислительные свойства неметаллов увеличиваются в ряду слева направо:
Окислители: FeCl3, H2SO4, HNO3, K2Cr2O7, KClO3, KMnO4, O2, F2.
Окислители и восстановители: S и другие неметаллы, SO2, KNO2, НСl, Н2O2.
Восстановители: Аl, Са и другие металлы, H2S и сульфиды, K2SO3, KI, NH3.
Метод электронного баланса1. Записывают формулы реагентов и продуктов, находят элементы, которые понижают и повышают степени окисления, и записывают их отдельно:
Мn O2 + K N O3 + КОН → К2 Мn O4 + K N O2+…
2. Составляют уравнения полуреакций восстановления и окисления, соблюдая для каждой из них законы сохранения числа атомов и заряда:
MnIV – 2е¯ = MnVI
NV + 2e¯ = NIII
3. Находят наименьшее общее кратное числа переданных в каждой полуреакции электронов и подбирают дополнительные множители для уравнений полуреакции так, чтобы суммарное число принятых и отданных электронов стало равным нулю: