|rn — rn0|>e, n>N
Другими словами, частота в конечном числе испытаний отнюдь не характеризует предельную частоту появления признака. К последней невозможно «подобраться», так сказать, конечными испытаниями, если не делать дополнительных ограничительных предположений. Но каков философский смысл этих дополнительных предположений, что говорят они нам о самой реальности?..[139]
Чуткие умы всегда чувствовали этот живой парадокс, заключённый в понятии вероятности: с помощью вероятностей элементарных исходов мы можем считать вероятности более сложных событий, но сосчитать вероятность самого элементарного исхода мы не можем[140]. А. Пуанкаре писал в своём «Исчислении вероятностей»: «Полное определение вероятности есть, тем самым, род порочного круга: как узнать, что все случаи равновероятны? Математическое определение здесь невозможно; мы должны в каждом применении делать соглашения (conventions), говоря, что мы рассматриваем такие-то и такие случаи как равновероятные. Эти соглашения не совсем произвольны, но они ускользают от сознания математика, который и не должен их исследовать, как только они уже приняты. Таким образом, целое задачи о вероятности распадается на два этапа исследования: первый, так сказать, метафизический, который оправдывает то или иное соглашение; и второй, математический, который применяет к этим соглашениям правила исчисления»[141]. Теория вероятностей как математическая дисциплина, особенно после формулировки её в аксиоматической форме А.Н. Колмогоровым в 1933 году, должна быть отнесена как раз ко второму этапу. А первый, метафизический, это и есть тот, которым мы сейчас занимаемся. Как же оправдать априорные вероятности, назначаемые элементарным исходам? Здесь мы опять видим в работе принцип недостаточного основания. Когда мы говорим о симметрии монеты или кубика, мы, на самом деле, и подчёркиваем как раз, что у нас нет оснований считать выпадение одной стороны более возможным, чем другой, и эта равновозможность превращается в исчислении вероятностей в равновероятность. Равновероятность элементарных исходов — всё тот же «закон инерции», всё то же парадоксальное строительство здания знания на фундаменте незнания, на фундаменте, прочность которого гарантирована именно абсолютностью незнания. Эта своеобразная апофатика оказывается лежащей и в основании теории вероятностей.
§ 3. Научные теории бесконечности и апофатика
Но наиболее ярким «репрезентантом» апофатики в науке являются различные теории бесконечности и вообще всё, что связано с бесконечностью. И это неслучайно. Бесконечность в науке есть как бы отражение идеи христианского (библейского) Бога. Для греческой античности, в лице её наиболее авторитетных представителей, категория бесконечного не может входить в науку. «Бесконечное не существует ни в космосе, ни в уме», — говорил Аристотель. Бесконечное сближается греческой мыслью с неоформленным, текущим, со становлением, стоящим на границе бытия и небытия: бесконечное деление отрезка, бесконечное увеличение числа и т. д.[142]. В силу этого бесконечное — если даже и признавать его существование — непознаваемо. Другими словами, отношение к бесконечному в греческой античности именно апофатическое.
С христианством в европейскую культуру приходит бесконечный Бог: всемогущий, всеведущий, всеблагой. В христианской теологии начинаются первые спекулятивные построения вокруг понятия бесконечности. Постепенно они проникают и в науку. Начинаются попытки катафатического подхода к бесконечности. Пока богословие, укоренённое в прямом духовном опыте богообщения, контролируемое соборным церковным сознанием, бдительно сохраняет трезвое представление о границах катафатического подхода, твёрдо помнит о непостижимости Божества в Нём Самом, спекулятивные построения, связанные с бесконечностью, не превосходят, так сказать, должной меры и соотносятся с традицией. Но со времени позднего средневековья ситуация в западном христианстве меняется. В богословии всё большую роль начинают играть отвлечённые рациональные построения (например, Николая из Кузы) с одной стороны, и в высшей степени нетрезвые мистические откровения — с другой (например, Мейстер Экхарт, Я. Беме и др). И у обеих этих линий всегда есть общий предмет для рассуждений: бесконечность. Поэтому возникающие в XVII столетии дифференциальное и интегральное исчисления совершенно неслучайны: почва для этих всходов уже подготовлена несколькими веками многообразных спекуляций о бесконечном. В то же время, дифференциальное и интегральное исчисления входят в науку достаточно «революционно», заглушая победными сообщениями о решении всё новых задач негромкие голоса скептиков, безуспешно пытающихся напомнить об апориях и парадоксах, неотделимых от понятия актуально бесконечного (Б.Паскаль, Дж. Беркли).
139
Подробнее см. в моей книге:
140
Например, зная вероятности выпадания всех цифр симметричного кубика (одна шестая), мы можем посчитать вероятность того что при бросании двух кубиков сумма выпавших цифр будет больше 8.
142
Подробнее см. в моей книге: