8.1. Решите уравнение
(x − 4,5)4 + (x − 5,5)4 = 1.
8.2. Решите уравнение
(4x + 1)(12x − 1)(3x + 2)(x + 1) = 4.
8.3. Докажите, что уравнение
x² − 3у² = 17
не имеет решений в целых числах.
8.4. Найдите все целые решения уравнения
x² − 6xу + 13у² = 100.
8.5. Найдите остаток от деления многочлена x99 + x³ + 10x + 5 на многочлен x² + 1.
8.6. Найдите все целочисленные решения уравнения
2x²у² + у² − 6x² − 12 = 0.
8.7. В уравнении
x4 + аx³ + bx² + 6x + 2 = 0
один из корней равен √3 + 1. Найдите остальные корни уравнения, если а и b — рациональные числа.
8.8. При каких значениях а оба корня уравнения
x² − (а + 1)x + а + 4 = 0
отрицательны?
8.9. Найдите соотношение между а, b и с, если корни уравнения
x³ + аx² + bx + с = 0
образуют геометрическую прогрессию.
8.10. Известно, что уравнение x³ + px + q = 0 имеет корни α1, α2, α3. Выразите сумму α1² + α2² + α3² через p и q.
8.11. При каких а и α трехчлен х³ + ax + 1 делится на двучлен x − α без остатка и частное от деления при всех x больше нуля?
8.12. Остатки от деления многочлена относительно x на x − 2 и x − 3 равны соответственно 5 и 7. Найдите остаток от деления этого многочлена на (x − 2)(x − 3).
8.13. Найдите все действительные значения p и q, при которых х4 + 1 делится на x² + рх + q.
8.14. Докажите, что многочлен
x²n + 1 − (2n + 1)хn + 1 + (2n + 1)хn − 1,
где n — натуральное число, делится на (x − 1)³.
8.15. Определите p и q так, чтобы многочлен
6х4 − 7х³ + рх² + 3х + 2
делился без остатка на x² − x + q.
Глава 9
Алгебраические уравнения и системы
Равенства. Тождества. Два математических выражения, соединенных знаком =, образуют равенство.
Примеры равенств:
а² + b² = с², 3 = 3, 3 = 5,
sin² x + cos² x = 1, , sin x = 3.
Числовое равенство может быть истинным (верным) или ложным (неверным). Равенство 3 = 3 истинное, равенство 3 = 5 ложное.
Буквенное равенство при различных значениях входящих в него букв также принимает одно из двух значений: «истина» или «ложь». Например, равенство а² + b² = с² при а = 3, b = 4, с = 5 истинно, а при а = 3, b = 4, с = 6 ложно. Равенство sin² x + cos² x = 1 истинно при всех действительных значениях x, а равенство sin x = 3 всегда ложно.
Если какая-либо часть равенства (или обе части одновременно) перестает существовать, то равенство становится ложным. Равенство ложно при , где k — любое целое число, так как для четных k не существует ctg x, а для нечетных k не существует tg x. Равенство ложно при x = −1, так как его левая часть теряет смысл при этом значении x (обратите внимание, что правая часть существует всегда). Обе части равенства sin x = 3 всегда имеют смысл, однако это равенство всегда ложно.
Для любого математического выражения можно указать множество систем (наборов) значений входящих в него букв, при которых это выражение существует, т. е. принимает некоторое числовое значение. Такое множество мы будем называть областью определения (областью существования) рассматриваемого математического выражения.