Другими словами, предполагают, что для букв а, b и с выбраны определенные, хотя и произвольные, значения, в то время как буква x, которой обозначено неизвестное, остается «свободной». Вместо нее можно подставлять различные числа, в результате чего возникнут либо истинные, либо ложные числовые равенства. Равенство (1) выполняет роль «формы» (или «схемы») уравнений, которая превращается в уравнение, как только мы остановим свой выбор на конкретных значениях параметров. Если выбор значений параметров уже сделан, то полученное уравнение можно рассматривать как «форму» числовых равенств — ложных или истинных.
Часто представляют себе уравнение как равенство двух функций (в частности, как равенство функции нулю), а не как форму. Такое представление недостаточно точно, так как может привести к потере корней.
Например, уравнение
x2x = 1 (2)
имеет корни x1 = 1 и x2 = −1, в то время как функция x2x определена только при положительных x.
Если же уравнение (2) мы рассматриваем как форму, порождающую числовые равенства, то при x = −1 слева получим выражение (−1)−2, которое имеет смысл и равно 1.
Итак, уравнением относительно неизвестного x называется форма числовых равенств, которая превращается в истинное или ложное числовое равенство при подстановке вместо буквы x какого-нибудь числа, взятого из рассматриваемой области чисел. Приведем еще несколько определений.
Пусть x, у, z, ... — неизвестные в уравнении
f(x, у, z, ...) = 0. (3)
Набор значений неизвестных[3]
называется решением уравнения (3), если
f(а, b, с, ...) = 0 (3′)
является истинным числовым равенством.
Решение уравнения с одним неизвестным называют также корнем этого уравнения.
Корнем уравнения 3x² + 2x − 1 = 0 является число x = −1, решением уравнения 2у² − 3xу + x² = 0 является система чисел
Решить уравнение — значит, найти все его решения или доказать, что оно не имеет решений.
Два уравнения называются равносильными, если они имеют одно и то же множество решений. Другими словами, любое решение первого уравнения является также решением второго уравнения и, обратно, любое решение второго уравнения является также решением первого уравнения.
Вообще говоря, понятие равносильности тесно связано с определенной областью чисел. Так, уравнения x − 1 = 0 и (x − 1)(x² − 3) = 0 равносильны в области целых чисел и неравносильны в области действительных чисел.
Говорят, что второе уравнение является следствием первого, если каждый корень первого уравнения является корнем второго уравнения.
В процессе решения уравнение можно заменить любым равносильным ему уравнением. Легко убедиться в том, что замена входящего в уравнение математического выражения тождественным[4] приводит к равносильному уравнению.
Во многих случаях удобно заменить данное уравнение его следствием. В результате такой замены могут появиться посторонние корни, т. е. такие числа, которые являются корнями следствия, но не удовлетворяют исходному уравнению. Чтобы отсеять посторонние корни, следует сделать проверку всех найденных значений неизвестного.
Замена входящего в уравнение выражения неабсолютно тождественным может нарушить равносильность. В результате у уравнения могут появиться посторонние корни, а некоторые корни могут быть потеряны.
Например, применение неабсолютного тождества[5]
log x + log у = log xy
приводит к следствию, в то время как применение этого же тождества справа налево
log xy = log x + log у
может повлечь за собой потерю решений. В первом случае в результате замены log x + log у на log xy мы можем приобрести решения, лежащие в области x < 0, у < 0. Во втором случае решения из той же самой области могут быть потеряны.
При решении большинства уравнений угроза приобретения посторонних корней не должна нас пугать, так как в наших руках есть такое надежное средство, как проверка. Гораздо более опасной является перспектива потери корней.
3
Для краткости равенства можно располагать в строку или писать (
4
Имеется в виду применение абсолютного тождества, см. с. 42. Для неабсолютных тождеств это утверждение неверно.