Выбрать главу

Избежать потери корней можно, если вместо неабсолютных тождеств, сужающих область определения, пользоваться неабсолютными тождествами, расширяющими область определения уравнения.

Вернемся к рассмотренному только что примеру с суммой логарифмов. Когда при решении уравнения приходится потенцировать, то неабсолютное тождество

log x + log у = log

не приводит к потере корней. Если же по ходу преобразований возникла необходимость прологарифмировать произведение, то нужно воспользоваться другим неабсолютным тождеством

log = log |x| + log |у|,

применение которого может лишь расширить область определения уравнения.

Есть второй прием, позволяющий избежать потери решений, который мы поясним на примере уравнения: sin 2x + 7 cos 2x + 7 = 0. Воспользуемся формулами, позволяющими выразить sin 2x и cos 2x через tg x. Получим

Приведя к общему знаменателю и отбросив знаменатель, который всегда отличен от нуля, получим простое уравнение

tg x = −7,

откуда x = −arctg 7 + πk, где k — любое целое число.

Хотя все произведенные преобразования кажутся «законными», мы легко убедимся в том, что целая серия корней xπ/2 + kπ потеряна. Достаточно подставить эти значения неизвестного в исходное уравнение.

Корни были потеряны в результате применения неабсолютных тождеств

левые части которых существуют всегда, а правые теряют смысл

именно при x = π/2 + kπ.

Если по каким-то причинам мы не могли избежать применения неабсолютных тождеств, грозящих потерей корней, то нам не остается ничего иного, как проверить те значения неизвестного, которые оказались исключенными из области определения входящих в уравнение выражений. В нашем примере, как и в большинстве тригонометрических уравнений, это нетрудно сделать.

Наконец, отметим такой важный момент при решении уравнений, как правильное использование условий.

Уравнение

lg (1 + x) + 3 lg (1 − x) = lg (1 − x²) − 2

удобнее всего решать, преобразовав lg (1 − x²) в сумму логарифмов. Чтобы оградить себя от возможной потери корней, мы должны написать

lg (1 − x²) = lg |1 + x| + lg |1 − x|.

Однако подобная осторожность в этом примере является излишней. Поскольку в уравнение наряду с выражением lg (1 − x²) входят lg (1 + x) и lg (1 − x), то 1 + x и 1 − x должны быть положительными, чтобы левая часть уравнения имела смысл. Поэтому вместо lg |1 + x| и lg |1 − x| можно написать lg (1 + x) и lg (1 − x). Таким образом, данное уравнение принимает вид

lg (1 + x) + 3 lg (1 − x) = lg (1 + x) + lg (1 − x) − 2.

Приведя подобные члены, получим

2 lg (1 − x) = −2,

откуда x = 0,9 — единственный корень данного уравнения.

На этом примере мы видим, что правильное использование условия позволяет быстрее достичь цели, чем в случае чисто формальных преобразований.

Однако достаточно ли обоснованным было приведенное выше решение? Чтобы убедиться в этом, решите самостоятельно такое уравнение

lg (1 + x) + 3 lg (1 − x) = lg (1 − x²) + 2.

Оно отличается от предыдущего лишь знаком последнего члена. Поэтому, повторив все приведенные только что рассуждения, получим

2 lg (1 − x)= 2,

откуда x = −9. Подставив это значение x в исходное уравнение, убеждаемся в том, что нами найден посторонний корень. Произошло это потому, что уравнения

lg (1 + x) + 3 lg (1 − x) = lg (1 + x) + lg (1 − x) + 2

и

2 lg (1 − x) = 2

неравносильны. Равносильность нарушилась в результате уничтожения в правой и левой частях уравнения члена lg (1 + x), который существенно ограничивал область определения уравнения. Таким образом, проверка здесь является необходимой частью решения.

Разобранный пример нередко предлагают решать так. Найдем область определения уравнения:

Теперь будем применять к уравнению те преобразования, которые не могут привести к потере корней:

lg (1 + x) + lg (1 − x)³ = lg (1 − x²) + lg 100,