Говорят о системе уравнений, если требуется найти все решения, общие для всех уравнений, входящих в систему.
Если же нужно найти все такие решения, которые удовлетворяют хотя бы одному из нескольких уравнений, то говорят, что эти уравнения образуют совокупность.
Систему уравнений обычно записывают в столбик и ставят сбоку фигурную скобку — знак системы; совокупность уравнений, как правило, записывается в строку. Если же совокупность уравнений удобнее записать в столбик, то слева ставят квадратную скобку — знак совокупности.
Если мы рассмотрим совокупность двух уравнений:
x² − x − 2 = 0 и x² − 2x − 3 = 0,
то корни первого: x1 = 2, x2 = −1 нужно объединить с корнями второго: x1 = 3, x2 = −1. Получим решение совокупности:
x1 = 2, x2 = −1, x3 = 3.
Если же мы рассмотрим систему
то из корней первого уравнения нужно выбрать те, которые удовлетворяют и второму уравнению системы. Получим только одно решение системы: x = −1.
Уравнение
f(x) · φ(x) = 0 (6)
называется распадающимся.
Теорема 2. Уравнение (6) равносильно совокупности двух систем:
(7)
Доказательство. Если x = а — корень уравнения (6), то f(а) и φ(а) существуют и либо f(а) = 0, либо φ(а) = 0 (случай, когда оба сомножителя одновременно равны нулю нами из рассмотрения не исключен). Следовательно, одна из систем (7) удовлетворяется при x = а.
Пусть теперь x = а — корень совокупности (7). Если при x = а удовлетворяется либо первая, либо вторая система, то и в том и в другом случае f(x) · φ(x) = 0, т. е. x = а — корень уравнения (6).
Докажите следующие теоремы о равносильности уравнений.
17. Если к обеим частям уравнения
f(x) = φ(x)
прибавить выражение ψ(x), то в случае, когда ψ(x) имеет смысл при всяком x, получится равносильное уравнение, в противном случае могут быть потеряны корни.
18. Уравнения
f(x) + ψ(x) − ψ(x) = φ(x)
и
f(x) = φ(x)
в случае, когда ψ(x) имеет смысл при всяком x, равносильны; в противном случае второе уравнение является следствием первого.
19. Если в уравнении
(8)
отбросить знаменатель, то получится уравнение
f(x) = ψ(x),
являющееся следствием данного уравнения.
19а. Уравнение (8) равносильно системе
(8а)
20. Если обе части уравнения f(x) = φ(x) возвести в квадрат, то полученное уравнение
[f(x)]² = [φ(x)]² (9)
является следствием данного уравнения. Уравнение (9) равносильно совокупности двух уравнений:
f(x) = φ(x), f(x) = −φ(x).
21. Чему равносильна система
22. Докажите, что следствием уравнения
является уравнение
при условии, что
Найдите действительные корни уравнений:
9.1. |x| − 2|x + 1| + 3|x + 2| = 0.
9.2. |x² − 9| + |x² − 4| = 5.
9.3.
9.4.
9.5.
9.6.
9.7. а и b — действительные числа.
9.8. а — действительное число.
9.9. а — действительное число.
9.10. Найдите действительные решения уравнения
|x² − 3 · x/2 − 1| = −x² − 4x + β
и определите, при каких значениях β оно имеет единственное[6] действительное решение.
9.11. Решите систему
9.12. Найдите все действительные значения k, при которых решение системы