Выбрать главу

11.30.

Глава 12

Тригонометрические преобразования 

Основные тригонометрические формулы.

1. Зависимости между тригонометрическими функциями:

2. Тригонометрические функции суммы и разности аргументов:

sin (x ± у) = sin x cos у ± sin у cos x,

cos (x ± у) = cos x cos у ± sin x sin у,

3. Функции двойного и тройного аргумента:

sin 3х = 3 sin x − 4 sin³ x,     cos 3х = 4 cos³ x − 3 cos x.

4. Формулы понижения степени для синуса и косинуса:

5. Функции половинного аргумента:

6. Преобразование суммы функций в произведение:

7. Преобразование произведения функций в сумму:

sin x cos y = ½[sin (xy) + sin (x + y)],

cos x cos y = ½[cos (xy) + cos (x + y)],

sin x sin y = ½[cos (xy) − cos (x + y)].

Все формулы нужно уметь читать не только «слева направо», но и «справа налево». Так, например, в записи sin π/4 cos x − cos π/4 sin x нужно узнавать sin (π/4 − x), а не принимать ошибочно за sin (x − π/4), а в записи  узнавать ctg x/2.

Проверьте себя и напишите, чему равно выражение  Если вы убеждены в том, что это выражение равно тангенсу половинного угла, обратите внимание на то обстоятельство, что выражение, о котором идет речь, неотрицательно, а тангенс половинного угла — знакопеременная функция. Таким образом,

и не следует писать в этом случае ±tg x. То же самое рассуждение можно провести для любой из приведенных выше формул, где перед корнем стоит ±. Мы ставим ±, чтобы «примирить» выражение, стоящее в левой части, которое может быть отрицательным, с неотрицательным корнем. Поставив ±, мы не получаем двузначную функцию; этот символ говорит лишь о том, что для каждого фиксированного x мы обязаны выбрать определенный знак, в зависимости от того, в какой четверти тригонометрического круга оказывается угол, стоящий под знаком функции в левой части формулы.

12.1. Упростите выражение

12.2. Докажите тождество

tg 2α tg (30° − α) + tg 2α tg (60° − α) + tg (60° − α) tg (30° − α) = 1.

12.3. Докажите тождество

12.4. Докажите, что tg (α + β) = 2 tg α, если

sin α cos (α + β) = sin β и α + β ≠ π/2(2n + 1),  α ≠ π/2(2n + 1), .

12.5. Вычислите без таблиц 

cos π/7 cos /7 cos /7.

12.6. Вычислите без таблиц

tg π/7 tg /7 tg /7.

12.7. Докажите, что если  и  то при аВbA ≠ 0

12.8. Докажите, что если |sin x| = |k sin у|, где −1 ≤ k ≤ 1, то произведение sin (x + у) sin (x − у) неположительно.

12.9. Докажите, что если sin α + sin β = а, cos α + cos β = b, то

12.10. Дано

2 tg² α tg² β tg² γ + tg² α tg² β + tg² β tg² γ + tg² γ tg² α = 1.

Вычислите sin² α + sin² β + sin² γ.

12.11. Углы α, β, γ образуют арифметическую прогрессию с разностью π/3 . Вычислите

А = tg α tg β + tg β tg γ + tg α tg γ.

12.12. Сумма трех положительных чисел α, β и γ равна π/2. Вычислите произведение ctg α ctg γ, если известно, что ctg α, ctg β и ctg γ образуют арифметическую прогрессию.

12.13. Вычислите без калькулятора и без таблиц

sin 106° + cos 106° ctg 8°.

Глава 13

Тригонометрические уравнения и системы

Простейшие тригонометрические уравнения.

sin x = а, xnπ + (−1)n arcsin а, |а| ≤ 1,

cos x = а, x = 2nπ ± arccos а, |а| ≤ 1,