1.27. Стороны треугольника связаны соотношением а² = c(b + с). Докажите, что угол A вдвое больше угла C.
1.28. Пусть O — центр окружности, вписанной в треугольник ABC. Докажите, что если OA² = OB · OC, то
1.29. Площадь , треугольника ABC удовлетворяет соотношению S = а² − (b − с)². Найдите угол A.
1.30. На сторонах треугольника внешним образом построены квадраты. Докажите, что расстояние между центрами квадратов, построенных на боковых сторонах, равно расстоянию от центра квадрата, построенного на основании, до противоположной вершины треугольника.
1.31. В треугольнике ABC единичной площади проведен отрезок AD, пересекающий медиану CF в точке M, причем FM = ¼CF. Найдите площадь треугольника ABD.
1.32. Докажите, что произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон (теорема Птолемея).
1.33. Отрезок, соединяющий середины оснований трапеции, равен их полуразности. Найдите сумму углов при большем основании трапеции.
1.34. Через центр квадрата ABCD проведена прямая, пересекающая сторону AB в точке N, причем AN : NB = 1 : 2. На этой прямой взята произвольная точка M, лежащая внутри квадрата. Докажите, что расстояния от точки M до сторон квадрата AB, AD, BC и CD, взятые в названном порядке, образуют арифметическую прогрессию.
1.35. Квадрат и правильный треугольник, имеющие общую вершину, вписаны в окружность единичного радиуса. Найдите площадь, покрытую и квадратом и треугольником.
1.36. В окружность вписаны равнобедренный остроугольный треугольник площадью S, и трапеция так, что ее большее основание совпадает с диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Средняя линия трапеции равна l. Найдите высоту трапеции.
1.37. Найдите отношение площади трапеции ABCD к площади треугольника AOD, где O —точка пересечения диагоналей трапеции, если известно, что .
1.38. Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют каждый вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.
1.39. Внутри угла AOB, меньшего π, дана точка M, находящаяся на расстоянии а от вершины угла. Отрезок ОМ образует углы α и β со сторонами угла AOB. Найдите радиус R окружности, проходящей через M и отсекающей на сторонах угла AOB хорды, равные 2а.
1.40. Из внешней точки A проведены две взаимно перпендикулярные секущие ABD и ACE к окружности с центром O. Площади треугольников ABC и АDЕ относятся как m : n. Определите величины дуг BC и DЕ, каждая из которых меньше полуокружности.
1.41. Из точки А, лежащей на окружности радиуса r, проведены две хорды AC и AB. Эти хорды лежат по одну сторону от диаметра окружности, проходящего через точку А. Длина большей хорды равна b, а угол ВАС равен α. Найдите радиус окружности, которая касается хорд AB и AC и дуги BC.
1.42. Даны две концентрические окружности радиусов R и r (R > r). Найдите сторону квадрата, две вершины которого лежат на одной окружности, а две другие — на другой. При каком соотношении между радиусами данных окружностей решение задачи возможно и при каком соотношении задача имеет единственное решение?
1.43. В сегмент, дуга которого содержит 120°, вписан квадрат. Определите сторону квадрата, если радиус R круга равен 2 + √19 .