Не существует прямого доказательства того, что члены секретных групп инспирировали политические нападки на работу Максвелла; но именно этого и следовало ожидать, основываясь на их системе верований, которую они поклялись защищать под страхом смерти. Еще один более очевидный пример: демонизация концепции “эфира”, используя в качестве “доказательства” результаты эксперимента Майкельсона-Морли. Мистик 19-го века мадам Блаватская предсказала, что эфир будет убран из обсуждения, и что “столпы науки с ним покончат”. Более подробно мы будем обсуждать это в томах 2 и 3. Даже сейчас предубеждение против эфира так сильно, что вас сразу же уволят, если вы попытаетесь поднять этот вопрос в научной дискуссии. Нас это не волнует, ибо время и доказательство залечат рану.
Как только мы принимаем существование жидкообразного эфира на разных уровнях плотности, где каждая плотность обладает своим качеством вибрации, мы сразу же осознаем, что в различных “чистых” вибрациях возникают определенные явные геометрические формы. Геометрия — единственный самый важный аспект поведения эфира в терминах его способности конструирования устойчивых структур, таких как кристаллы. Без геометрии материя была бы невозможна, ибо именно геометрия позволяет “пузырькам поля” собираться вместе в определенные организованные паттерны, образуя конкретные молекулы. В противном случае, самое большее, на что мы могли бы надеяться, — что сферы выстраивались бы полюс к полюсу или свободно плавали вокруг друг друга. А такое поведение недостаточно сложно для того, чтобы строить материю. Вершины геометрических форм обладают большей силой притягивать друг друга, чем другие области поверхности сферы (что мы будем обсуждать ниже). Это позволяет сферам организовываться в не случайные “матричные” паттерны.
Хотя бо льшую часть времени мы не можем видеть эти геометрии, за исключением кристаллических структур, микрокластеров и квазикристаллов (том 3), они создают ярко выраженные “напряжения” или зоны давления в эфире, которые способны оказывать огромное влияние на свое окружение. Подумайте о силе, содержащейся в водовороте, и вы увидите, что внутри себя жидкость может иметь области более сильных и более слабых сил. Таким образом, геометрические формы обладают как качествами жидкости, ибо формируются в жидкой среде, так и кристалла, ибо они явно геометричны. Д-р Гарольд Аспден называет их “жидкими кристаллами”. К концу тома 3 у нас будет полная физическая модель для демонстрации того, как эти образования спрятаны во всей физике — квантовой, биологической или космологической. Если вы думаете, что химия и квантовая физика совершенны в той форме, в какой они существуют сейчас, то будете очень удивлены обнаружить, как много проблем существует в современных моделях, и что предлагаемый нами проект решает каждую из этих проблем. В этом томе мы коснемся некоторых основ влияния этого геометрического паттернирования, включая “Глобальную Решетку” энергетических линий на Земле, непосредственно формирующую континенты.
Самое важное качество Платоновых Тел: каждая форма совершенно вписывается в сферу так, что все их внешние вершины точно сливаются с внешней поверхностью сферы. Все прямые линии, составляющие эти объекты, будут одинаковой длины, а все геометрические точки на сфере равноудалены от своих соседей. Именно этого и следовало ожидать в науке о вибрации. Платон и другие греческие философы также указывали на то, что в этих геометрических телах все угловые измерения одинаковы, и что каждая грань трехмерных объектов имеет одну и ту же форму. Хотя поначалу это может сбивать с толку, в действительности все работает очень хорошо. Когда мы смотрим на эту информацию, мы видим, что соревнуются всего пять основных форм. Эти пять форм следующие: октаэдр (восьмигранник), звездный тетраэдр (два четырехгранника, вставленные друг в друга), куб (шестигранник), додекаэдр (двенадцатигранник) и икосаэдр (двадцатигранник).
Чтобы понять, почему эти геометрические объекты образуют вибрирующую сферу жидкообразной энергии, следует кое-что знать о волновом движении. Если у нас есть простая двумерная волна, например, гитарная струна, то существуют три основных компонента, которые будут оставаться неизменными, если волна не возмущается. Это длина волны, частота и амплитуда. Длина волны — это насколько велика каждая часть волны, то есть, “наблюдаемое расстояние между двумя соседними гребнями волны”; в случае видимого света измеряется как линейная величина в ангстремах. Частота — количество гребней волны, которые проходят перед наблюдателем в каждую секунду; измеряется как число колебаний в секунду или в “герцах”. Амплитуда — насколько высока каждая волна, то есть, “величина волны, измеренная от нуля до пика”.
Любой цвет или звук, остающиеся неизменными какой-то период времени, все это время будут непрерывно повторять волны одинаковой длины. Типичный пример: “концертный уровень” частоты ноты ля 440 колебаний в секунду. Это значит: когда воздух вибрирует 440 раз в секунду, наше ухо интерпретирует это как музыкальных звук “ля”. Только и всего. Если бы не все 440 колебаний имели одинаковые частоту и амплитуду, мы бы не воспринимали устойчивую высоту в устойчивом объеме. Если мы повышаем частоту звука, например, до 497 колебаний в секунду, то повышается высота, а длина волны становится короче. Если мы увеличиваем амплитуду, увеличивается объем звука, увеличивается высота волны, а высота звука останется той же.
Также следует помнить: в этих волнах может храниться сложная информация. У нас есть два вида радиоволн: частотная модуляция или ЧМ и амплитудная модуляция или АМ. Слово “модуляция” означает “изменение”. Итак, в качестве простого объяснения: ЧМ волны имеют одинаковую амплитуду, но непрерывные изменения (модуляции) частоты, в то время как АМ волны имеют одинаковую частоту, но непрерывные изменения амплитуды. Вот в основном и все. Поскольку волны могут двигаться очень быстро, в них может храниться огромное количество информации; и это очень важное положение. В любой момент нас окружают АМ/ЧМ радио, Би-Би-Си, частоты полиции/пожарной службы/аварийной службы, радио-, теле- и спутниковые станции, беспроволочные и сотовые телефонные разговоры.
Далее, когда внутри сферы присутствует трехмерная геометрическая волновая форма, длина волны и частота будут представлены расстоянием между различными узловыми точками на поверхности сферы. Они могут измеряться в градусах и вычисляться посредством синусной тригонометрической функции. Амплитуда будет измеряться размером сферы, в радианах, и вычисляться с помощью косинусной функции. Таким образом, как только мы увеличиваем интенсивность (амплитуду) энергетического поля сферы, увеличиваются размеры самой сферы. Это объясняет, почему такие структуры существуют в размерах от самого крошечного уровня квантовой механики и до известной Вселенной. Также важно осознать: в жидкообразной системе эфира повышения частоты будут втягивать внутрь сферы энергию из окружающей среды. Следовательно, происходит увеличение размеров (амплитуды) сферы, и одна геометрия сдвигается в другую. В этой главе мы будем исследовать это позже, когда увидим, как четко разные Платоновы Тела “гнездятся” внутри друг друга, причем каждая новая геометрия больше, чем находящаяся внутри нее. Характерно, что повышение частоты вовлекает в процесс и увеличение амплитуды.