Ohain had joined the staff of the Heinkel Company as a designer, and subsequent developments were rapid — in complete contrast to the lack of interest shown by the British authorities in Whittle’s earlier design. As Ohain’s first experimental jet engine had used hydrogen as fuel, it burned with too much heat and produced too little thrust to be operationally viable, so his designs for a more compact version were intended to burn conventional liquid fuels instead. The He-178 jet plane, the first to be designed in the world, was based on Ohain’s third design, the HeS-3, which now burned diesel fuel. All the flight tests were carried out under conditions of total secrecy and on 27 August 1939 the first flight of the Heinkel He-178, with Erich Warsitz at the controls, was successfully completed. The entire project had been privately conducted at the expense of Heinkels, and the test flight of the German plane was two years ahead of the British.
The aircraft was a small plane with a metal fuselage of conventional configuration and construction. The jet intake was in the nose, and the plane was fitted with a tail-wheel undercarriage. The main landing gear was intended to be made retractable eventually, but was fixed in the down position throughout the flight trials. The plane proved the principle, but had a combat duration time of only 10 minutes so it was never going to be a production-line success. It inspired the design of the twin-jet He-280 which became the first prototype jet fighter in history. These remarkable designs were privately financed by Heinkels, as the German authorities were, much like the British, slow to be convinced of the merits of jet-propelled aircraft.
Although the fact is usually forgotten, the Russians were also developing a jet engine at this time. This was the brainchild of a relatively unknown engineering pioneer named Arkhip Lyulka from Kiev Oblast in Ukraine. Lyulka’s first interests were in turbofans as superchargers of piston engines on the Petlyakov Pe-8 bomber. Between 1939 and 1941 Lyulka worked on what was to become the first double-jet turbofan engine in the world, which he patented in April 1941. Work began on building a prototype fighter aircraft, but as the Nazis invaded Russia, Lyulka stopped his work and evacuated to the Ural mountains.
Heinkel realized that the time had come to convince the German High Command of the importance of the jet plane, and so in 1941 a contest flight was organized in Germany between a jet-powered He-280 and a propeller-driven Focke-Wulf Fw-190 fighter. The He-280 completed four laps of the course in less time than the Fw-190 could finish three. The jet plane was designed to be light, in order to match the relatively low thrust of the jet engines, it burned kerosene, instead of the more costly aviation spirit, and it had shown jet fighters to be a success. Yet the Nazis put their weight behind a rival design for a jet aircraft designed by Messerschmitt, the Me-262 Schwalbe (Swallow) or Sturmvogel (Stormbird). In July 1944 the Me-262 came into service. It is heralded as the world’s first jet fighter. In the same month the Gloster Meteor came into use, too; some people believe that the Meteor may have been in service several days before the Messerschmitt, in which case the British would take the claim. What is remarkable, however, is the astonishing synchronicity of the dates. We have seen that the German and British jet engines were being developed at exactly the same time and each nation had the first jet fighters ready at the same time. The ideas had progressed in Germany and in Britain at exactly the same rate. Which was the better plane? There is no question about that. The Me-262 was faster and better armed than the Gloster Meteor. The new British jet could fly at 410mph (660km/h) whereas the German Me-262 flew at 560mph (900km/h). The German jet fighters were an unquestionable success, and the German pilots would claim a total of over 500 Allied aircraft shot down for the loss of 100 Me-262 fighters. In contrast, the British jets were forbidden to fly near continental Europe, in case they were brought down and revealed design secrets to the enemy. Although they helped to intercept V-1 drones heading for London, they had little military impact. The Meteor did set a world airspeed record in November 1945 at Herne Bay in the UK, when Group Captain H. J. Wilson set the world’s first airspeed record by a jet aircraft. He flew a Meteor F Mk 4 at 606mph (975km/h). Macari’s Café, near the beach in Herne Bay, still has a small plaque on the wall to commemorate the event. The next year the record was raised to 616mph (991km/h), also by a Gloster Meteor.
Meanwhile, engineers from the United States and Canada had been to visit Whittle. The Americans designed their own jet, based on the British research, the Bell P-59 Airacomet but it was an unsuccessful aircraft and lacked the power of the Gloster Meteor. Development work also went ahead with the National Research Council of Canada. In May 1943 their findings were published in a top-secret report entitled Report on Development of Jet Propulsion in the United Kingdom, which reached two important conclusions. One was the need to establish a group to study jet engines in cold conditions (this was an area of research nobody else had thought to embrace); the other was the importance of forming a Canadian jet company as quickly as possible. In March 1944 Turbo Research was formed in Toronto. At first they developed the Whittle centrifugal-flow jet engine, but they soon progressed to their own design for a new axial-flow design, the Chinook. As the war was reaching its end they began to manufacture their Orenda jet engine which had many crucial advantages: its longer combustion chambers and increased power meant that it was, at its time, the most powerful jet engine in the world. The engines sold were worth a quarter of a million Canadian dollars.
Canadian researchers went further than anyone else among the Allies in investigating the protection of pilots at high altitude, and they constructed the first experimental decompression chamber in North America to study the effects of low air pressure on pilots. The result was the first anti-G suit to prevent pilots blacking out. It was invented by Wilbur Franks and became known as the Franks Suit. It was first used in 1942 by the Royal Navy pilots covering the Allied landings in North Africa.
In Germany, meanwhile, during the closing months of the war, the Arado Company manufactured the first jet bomber, the Ar-234 Blitz (Lightning). It had twin engines and a single pilot, and was flown mostly for reconnaissance at altitudes around 36,000ft (11,000m) where it was impossible for it to be shadowed or intercepted. The project began late in 1940, when Arado proposed their design for a jet bomber with the designation E-370 designed by Professor Walter Blume. It was a jet-engined aircraft with a Junkers Jumo-004 engine fitted beneath each of the wings. The design weight of the aircraft was 17,600lb (8,000kg) and, to keep the weight down, there were no landing wheels. The plane ran on a three-wheeled trolley which was jettisoned after take-off, and it landed later on skids. The plane had a maximum design speed of 490mph (789km/h) with an operating altitude of 36,100ft (11,000m) and a range of 1,240 miles (1,995km). In April 1945 this became the last German warplane ever to fly over British soil during World War II. The Ar-234 was nicknamed the Hecht (Pike) and was described as a ‘blitz-bomber’ though in fact it never flew carrying a payload.
British fighter pilots saw a remarkable jet fighter in the closing months of the war, though there are no records of any engaging in combat. This was the Heinkel He-162 Volksjäger (People’s Fighter), a single-seater aircraft with an H-shaped tail fin. It was built of glued wood and constructed by semi-skilled labour, and could achieve a top speed of 562mph (905km/h) at 19,690ft (6,000m). What makes this so remarkable is that it went from conception to test flight in just 90 days.