Выбрать главу

The new way in which the Y-Gerät worked was to transmit a single beam directed over the target. The planes would be fitted with transponders that would transmit the beam back towards the originating transmitter station. The returned signal was measured automatically and compared with the timing of the original signal; so this gave the exact position of the aircraft along the narrow beam. If any correction was needed, the radio operators could send coded instructions to the pilot, making outside interference difficult. At least, that is how the Germans saw it. It was viewed very differently by the British. The new Wotan signals were soon detected in England, and it was discovered that they were transmitted on a frequency band of 45MHz. This was a standard radio frequency, and was exactly the same as the BBC television transmitter at Alexandra Palace in North London. Alexandra Palace (known as Ally-Pally) had broadcast a regular television service from 1936 but had been closed down by order of the government when war broke out. Jones simply ordered that the signal be turned back on, but operated at very low power. This was calculated to interfere with the timing of the Wotan navigational transmissions — but too weak for the Germans to detect. Jones was a warm and amusing character, and an inveterate practical joker and as time went by he instructed the crew at Ally-Pally gradually to increase the strength of the signal. Communications were picked up, in which the German bomber pilots accused their control room of incompetence; later the Germans believed that the Wotan equipment was at fault. The British counter-measures remained undetected, and the new guidance system could not be made to work.

And so radio became a central theme of aircraft guidance. For a long time the Germans held supremacy in their ability to create sophisticated transmitters and receivers which could achieve the impossible. But the British, for their part, realized that here lay the path to successful interference with the whole navigational system — and they used inexpensive and cunning means to subvert, and eventually defeat, the ingenuity of their foes.

The steering and guidance of torpedoes was a different matter. The most revolutionary proposal was for a system that would allow signals to be sent on radio waves that continuously changed their frequency (making them almost impossible to intercept). Surprisingly, the idea was jointly designed by a film star, ‘the most beautiful woman in the world’, the Hollywood actress Hedy Lamarr and her neighbour, the avant garde musician George Antheil. Anthiel had experimented with the automatic synchronisation of pianolas and composed a suite entitled Ballet Mécanique in which mechanical pianos played in a synchronous sequence. Under her married name of Hedy Kiesler Markey, Hedy Lamarr designed a system that would use a piano roll to change the frequencies of radio transmissions to guided torpedoes, making them almost impossible to jam. She took out a patent in August 1942, and always wished to join the United States National Inventors Council. She was discouraged because the United States authorities insisted that she could better help the war effort by fund-raising — indeed she is reported to have raised $7,000,000 at a single concert.

The American military did not show interest until 1962 when her idea was first used during the blockade of Cuba. Lamarr’s contribution was finally recognized 1997, when she was presented with an award by the Electronic Frontier Foundation. At about this time, the boxes of CorelDRAW software featured a dramatic picture of Hedy Lamarr on the cover, in recognition of her importance as an inventor. Far from being flattered, she sued them for infringement of her image and the matter was settled out of court with a sizeable sum paid in damages. And today? Many of our wi-fi networks use ‘network hopping’ that is derived directly from Hedy Lamarr’s secret inspiration in World War II.

ENIGMA — FICTIONS AND FACTS

The extraordinary story of the German Enigma cryptographic machine has become much better known to the American audience since the movie entitled U-571 was released in 2000. Directed by Jonathan Mostow, it starred Matthew McConaughey, Bill Paxton, Harvey Keitel and Jon Bon Jovi, among others. The film related how brave American submariners captured the German submarine U-571 and seized their mysterious on-board Enigma machine. As a result, the Allies were able for the first time to decipher crucial German dispatches.

The story is a fake. The submarine U-571 was never captured by anyone, but was sunk by a torpedo dropped from a Short Sunderland flying boat from 461 Squadron of the Royal Australian Air Force in January 1944 off the coast of Ireland. No Americans ever captured a naval Enigma machine.

The British audience knows a different version. They are aware that it was actually the crew of HMS Bulldog who captured an Enigma machine from a German submarine, the U-110. The capture took place in the North Atlantic in May 1941, when the United States had not even officially entered the war, and the enterprising British sailors were responsible for seizing the German machine and the documentation aboard.

This allowed their intelligence officers to come face to face with an Enigma machine for the first time, thus finding out how this remarkable machine could operate. That is not true either. Although the dates (and the vessels) are correct, the belief that this was the first encounter with Enigma is a myth.

Long before World War II began, the Enigma machine was already well known to the British, and to many other nations as well. It was not invented for the war, and had begun life as a commercial encryption device that was available for several years by mail order. A German engineer named Arthur Scherbius designed the original machine. It used the now-famous system of rotors and in February 1918 Scherbius patented his device — this was during World War I! In collaboration with a funding partner, E. Richard Ritter, the Scherbius & Ritter Company was established. They immediately approached the German authorities, believing that their machine would be of value for international top-secret communications. The Foreign Office considered the design, and reported back that it held no interest for them. The German Navy were then approached, but they said they were not interested either. Somewhat disillusioned by the response of officialdom, Scherbius and Ritter eventually joined with others to form the Chiffriermaschinen Aktien-Gesellschaft (Cypher Machines Stock Company) in 1923, and began commercial production of the first Enigma machines.

The ingenious device was publicly exhibited for the first time in that same year and mail-order sales began immediately. The main disadvantage of the first machines was their large size. They were was equipped with encryption gears and a full typewriter mechanism, and weighed some 110lb (50kg). The keyboard, rather than being in the standard European QWERTY layout, had the keys set alphabetically. An improved version, the Model B, was somewhat less bulky, and in 1926 the Enigma C machine was released. Instead of the heavy typewriter mechanism, it was fitted with small lamps that the operator had to read, and in consequence was nicknamed the Enigma Glowlamp. During the following year it was replaced with the Enigma D, and this was sold to hundreds of customers during 1927–28. The Enigma was now famous, and was sold across Britain, Italy, Japan, the Netherlands, Poland, Spain, Sweden, Switzerland and the United States.