Древние греки верили (именно верили), что существуют только целые числа. Они считали эту истину очевидной. Греки думали, что все остальные числа могут быть записаны как дроби, или отношения целых чисел, например 22/7. Пифагора считают открывшим такие отношения в музыке: это тоны. «Октава» означает, что соотношение частот между соседними звуками составляет 1:2 (на длине вибрирующей струны). Этот музыкальный интервал называется октавой[75] потому, что включает в себя восемь нот. Музыкальный интервал квинта[76] шириной в 5 нот имеет соотношение частот рядом расположенных звуков, равное 3:2. Кварта[77], музыкальный интервал в 4 ступени, имеет соотношение 4:3.
И вот, примерно в 600 году до н. э., произошло поразительное событие – не только в истории математики, но вообще в сфере понимания человечеством окружающего мира. Пифагорейцы открыли, что √2 не может быть записан как отношение целых чисел. В результате они назвали это число иррациональным. Не рациональным. Сумасшествие.
Все это может показаться загадочной стороной математики, но подумайте об этом хорошенько. Как вообще можно быть уверенным, что ваше утверждение истинно? В конце концов, нет ничего сверхъестественного в √2: это всего лишь длина гипотенузы в прямоугольном треугольнике с длинами катетов, равными 1. Из физических измерений этой фигуры нельзя заключить, что число будет иррациональным. Вы никогда не перепробуете всех возможных комбинаций целых чисел. Предположим, я скажу, что √2 равен результату деления числа 1 607 521 на 1 136 689. На самом деле это не так, но очень близко. Попробуйте сами: произведите эту операцию на калькуляторе, а потом возведите результат в квадрат. Или используйте таблицу.
Открыв иррациональный характер √2, пифагорейцы сделали важный шаг к признанию реальности ненаучного знания. Я привожу доказательство иррациональности √2 в Приложении 3. Это не очень трудно – можете убедиться сами. Позже мы поговорим подробнее о квадратном корне из 2, а сейчас давайте продолжим наше исследование значения термина мнимый.
Квадратный корень из 2 может быть представлен по крайней мере графически. Как я уже говорил, это длина гипотенузы в прямоугольном треугольнике с катетами, равными 1. Однако соотношение между длиной окружности и ее диаметром, которое мы называем в честь Пифагора числом π, нельзя представить графически. Получается, оно еще более странное, чем √2. Мы называем его трансцендентным, используя то же слово, которым обозначаем трансцендентальные медитации[78].
Одним из удивительных фактов, касающихся иррациональности √2 (показывающих, насколько это действительно экстраординарное явление), можно считать то, что оно было открыто всего один раз за историю цивилизации. Все другие утверждения по поводу этого числа в конечном счете возвращаются к работам древнегреческих математиков.
А что тогда можно сказать о √−1? Это не целое число, не рациональное и не иррациональное. Оно также не трансцендентное. Означает ли это, что его не существует? Нет, определенным образом оно существует, но только в такой степени, в которой реально существуют и другие числа. Они служат инструментами, которые мы используем для вычислений. Если такой инструмент (будь то 0, или −7, или √2) полезен, пользуйтесь им. Если √−1 нет в списке странных нецелых чисел, это не означает, что его не существует. По моему мнению и по мнению физиков и математиков, это число так же реально, как и 1.
Главная проблема с мнимыми числами скрыта в самом их названии. Если бы √−1 называлось «расширенным» вместо «мнимого», возможно, оно не создавало бы таких мучений для многих поколений студентов. Или, может быть, следовало назвать его «числом Е» по имени великого математика Леонарда Эйлера[79], который показал нам, что еπ√−1 + 1 = 0. Ричард Фейнман называл эту формулу «самой замечательной в математике». Она связывает пять важнейших чисел – е (основание натурального логарифма, математическую константу), π, √−1, 1 и 0 – совершенно неожиданным способом, который оказывается чрезвычайно ценным и для электротехники, и для квантовой физики. Замечательно, что Эйлер впервые использовал для обозначения основания натурального логарифма букву е, которая в честь ученого называется числом Эйлера.
78
Трансцендентальная медитация (от лат. transcendens – «перешагивающий», «выходящий за границы возможного», и лат. meditatio – «размышление», «обдумывание») – техника медитации c использованием мантр, основанная Махариши Махеш Йоги. Это динамичный процесс, в результате которого достигается состояние «спокойной осознанности».
79
Леонард Эйлер (Leonhard Euler, 1707−1783) – швейцарский, немецкий и российский математик и механик, внесший фундаментальный вклад в развитие математики, механики, физики, астрономии и ряда прикладных наук.