Я понял, что сделал правильный выбор. В университете преподавали будущие академики Соболев и Амбарцумян. Это были очень сильные люди, и естественно, я не мог не оказаться под их влиянием. Я выбрал звездную астрономию. И, пожалуй, была еще одна причина, чисто психологическая. Солнце не казалось мне интересным, слишком уж много в нем «деталей» — протуберанцы, пятна, вспышки…
— Если уж чем-то заниматься, то обязательно глобально?!
— Что-то в этом духе… Мне казалось, что на Солнце ничего принципиально нового нет, а наблюдения изо дня в день одинаковые.
— А разве в звездах много нового?
— Много.
— Говорят, что вторая половина ХХ века — это звездная астрономия?
— В мои студенческие годы подобное еще не утверждали, но сейчас, безусловно, оказалось, что это так! Дело в том, что звезды очень разные…
— Предположим, что их десять типов, сотня или даже тысяча?
— Или миллион!..
— Не может быть, чтобы так много!
— Это есть… К примеру, «одиночные звезды»… Может быть, они и «двойные», но вторая звезда никак не влияет. Эти «одиночные звезды» более или менее одинаковые. Они, конечно, отличаются друг от друга температурой, плотностью, другими характеристиками. Есть еще отличие по химическому составу — одни более молодые, и у них больше металла…
— Уже убедили, что много видов…
— Я о другом… Такие «одиночные звезды» — скучные… Иное дело «двойные звезды». Тут, как говорится, «возможны варианты». Их огромное количество: две звезды-гиганта, гигант и карлик, гигант и белый карлик, нейтронная звезда, две нейтронные звезды, «черная дыра» и так далее…
— Неужели нет ничего общего?
— Общее то, чем и занимается звездная астрономия. Кстати, это самое интересное в нашей науке: мы все время рассматриваем борьбу между временным выделением энергии — излучением, взрывом и так далее, и постоянно действующей гравитацией.
— То есть «спокойную жизнь»?
— Если бы так!.. Возьмем, к примеру, «одиночную звезду». Она образовалась, и в ней начал гореть водород. Он выделяет много энергии. Но верхние слои звезды не движутся — гравитация. Однако это вечно продолжаться не может, так как водород выгорает. А гравитация действует постоянно, и потому звезда начинает сжиматься. И это происходит до тех пор, пока не загорится гелий. Постепенно звезда сжимается до определенного уровня, рождается «белый карлик».
— Или «черная дыра»?
— Все зависит от массы. «Белые карлики» и «черные дыры» — это остатки звезд, то есть одно и то же, только массы у них различны. «Черная дыра» настолько плотная и «тяжелая», что луч света из нее не выходит.
— А нейтронные звезды?
— Если масса звезды меньше приблизительно раз в пять, чем у Солнца, то начинается весьма сложный процесс: атомы теряют свои нейтроны и протоны, они становятся «общими», вот и рождается нейтронная звезда.
— Вы об этом говорите так, будто все это происходит на наших глазах?
— На самом деле так и есть. Все это мы наблюдаем во Вселенной. Каждое из таких явлений описано, эффекты изучены и понятны. Иная ситуация возникает, когда вещество начинает перетекать из одной звезды в другую. Тут уж возникают очень интересные процессы. Представим, к примеру, что у нас есть нейтронная звезда, у которой нечему гореть, и вдруг в нее притекает свежий водород. Звезда начинает гореть…
— Это и есть Сверхновая?
— Нет. Это просто новая звезда. А теперь далее — водород выгорает, но масса звезды изменяется… Ну как это объяснить?! В общем, четыре атома водорода дают атом гелия, но он легче, чем четыре отдельных атома водорода… Появляется дефект массы, и он спокойно уходит в энергию…
— Вы постепенно спускаетесь по лестнице?
— Можно и так сказать… В конце концов мы приходим к атому железа, а дальше звезда уже гореть не может, так как не получается избытка масс… Сначала горит водород, потом гелий, углерод, натрий и так далее. И вот мы подходим к железу, и в этот момент происходит неограниченное сжатие. Оно и называется «коллапсом».