Выбрать главу

Хотя, по большому счету, ничего удивительного в том нет. Если какой-то компонент конструкции сильно нагревается, значит, он откуда-то черпает энергию для своего нагрева. А это, в свою очередь, означает, что по всему пути прохождения этой энергии будут более сильные электрические, а, следовательно, и тепловые потери. Итак, еще одна корректировка нашей схемы, к счастью, не связанная с ее радикальной переделкой — изменились параметры двухобмоточного дросселя.

Ну а теперь, наконец-то, можно попытаться снизить нагрев ключа корректора коэффициента мощности. На этот раз, кажется, ничто не мешает принципу аналогий, и следует попробовать заменить ключ каскодной схемой. Чтобы не переделывать заново плату, просто «набросаем» эти доработки «летучим» монтажом — если работа устройства улучшится, сделаем все капитально.

Пятое «длинное» включение

Опаньки! Вот уж этого мы меньше всего ожидали:

♦ силовой ключ корректора мощности нагрелся достаточно, но меньше, чем при предыдущем прогоне;

♦ диод корректора коэффициента мощности нагрелся заметно сильнее предыдущего прогона.

 Примечание.

Оказывается, что работа ключа и диода между собой взаимосвязаны! Чем меньше греется силовой транзистор, тем сильнее греется диод.

Есть ли этому какое-то объяснение? Объяснение этому факту есть, и оно вполне очевидно — раньше у нас самым «медленным» звеном был транзистор силового ключа (обычно высоковольтные полевые транзисторы имеют время закрывания порядка 300 не), а теперь это звено закрывается за время порядка 30–50 не.

И что теперь оказывается самым «медленным» звеном? Правильно, диод (со своими 100 нс)! Вот и получается — те динамические потери, что ранее рассеивались на силовом ключе, теперь «перекочевали» на диод! Таким образом, улучшив один элемент схемы, мы тем самым ухудшили режим работы другого.

И вот теперь перед нами встает вопрос — что делать с этим «улучшением». С одной стороны, режим работы силового ключа объективно стал легче. С другой стороны, легче он стал за счет утяжеления работы другого элемента схемы. Причем, в отличие от транзисторного ключа, который мы сделали каскодным, улучшить схемно-техническими решениями диод невозможно — он какой есть, таким и останется. Так что, возможно, в данном случае нужно просто махнуть рукой на то, что есть — усложнение схемы недостаточно себя оправдывает.

Давайте так и сделаем — махнем рукой. Каскодный ключ корректора мощности — отменяется! Тем не менее, улучшить работу этого узла можно, но уже совсем прямолинейным способом — заменой деталей на другие, с лучшими характеристиками:

♦ транзистор VT заменяем с 2SK141 на IRF740;

♦ диод заменяем с HER305 на UF600G.

Шестое «длинное» включение

Результат прогона следующий:

♦ двухобмоточный дроссель корректора мощности слегка теплый;

♦ трансформатор всего лишь теплый;

♦ силовой ключ корректора мощности слегка нагрелся;

♦ диод корректора коэффициента мощности слегка нагрелся;

♦ микросхема корректора мощности практически холодная;

♦ выпрямительный мостик слегка нагрелся;

♦ микросхема автогенерирующего конвертора практически холодная;

♦ ключевые транзисторы конвертора слегка нагрелись;

♦ сдвоенный диод выпрямителя напряжения накала вместе с радиатором нагрелся, но свечку не плавит.

Результат не может не радовать, хотя достигнут заменой на заведомо «излишние» по своим характеристикам компоненты!

А теперь — стабилизатор напряжения накала

Да, теперь нужно делать именно его. Для начала нужно определиться, каких характеристик мы от него ждем. Очевидно, выходное напряжение стабилизатора должно быть равным 6,3 В. Очевидно, что он должен обеспечивать ток не менее 3 А (а лучше больше) — именно такие величины мы использовали в предварительном расчете. И — самое главное, — этот стабилизатор должен ограничивать первоначальный бросок тока, потому что делать почти десятикратный запас по мощности для цепей накала нам совершенно ни к чему.

Как обычно, первое, с чего нужно начать разработку новой схемы, — это поискать готовые решения. В данном случае нас интересуют «импульсные Step-Down». Ведь городить линейный стабилизатор на ток в несколько ампер — значит гарантированно заполучить гигантский радиатор.

Но тогда как в таком случае будет выглядеть наша предыдущая борьба за уменьшение тепловыделения? Совершенно верно, она будет выглядеть полной глупостью! В результате поиска мы почти гарантированно «нарвемся» на массу схем с применением микросхемы МС34062 (отечественный аналог — К1156ЕУ5). Слов нет, микросхема, несмотря на давность разработки, и поныне весьма популярна, но, увы, — ей для нормальной работы потребуются мощные биполярные транзисторы, которые совсем не хотелось бы применять.

И вот тут наше внимание привлекает не слишком известная микросхема TPS40200. Она имеет все, что нам надо — плавный пуск, входы обратной связи и токовую защиту, хотя и требует для работы полевого транзистора с Р-каналом (отечественных аналогов таким транзисторам вообще не существует, да и характеристики транзисторов с Р-каналом всегда немного похуже, чем характеристики транзисторов с N-каналом). В даташите на микросхему имеется и типовая схема включения, так что задача представляется совсем несложной — спаял, убедился в работоспособности, и почил на лаврах. Итак, вот такую схему мы соберем для стабилизатора напряжение накала (рис. 8.13).

Рис. 8.13. Предварительная схема стабилизатора напряжения накала

Стабилизатор. Первый прогон

Схема стабилизатора нарисована, типы и номиналы компонент выбраны, дроссель намотан, печатная плата разведена и вытравлена, схема спаяна. Теперь вновь, как и ранее, проверяем схему на качество пайки и отсутствие замыканий. Затем подключаем к выходу стабилизатора лампу накаливания на 6,3 В, на вход Стабилизатора подключаем аккумулятор на 12 В, и — о чудо! — все заработало с первого включения! Вот что значит типовая схема! Теперь остается самая малость — проверить его работу на реальном усилителе. Подсоединяем вместо лампы накаливания наш ламповый усилитель, подаем питание и ждем, когда нагреются лампы.

Кажется, наше ожидание несколько затянулось…

В самом деле, прошло уже минуты три, а лампы и не думают нагреваться. Ну что же, давайте проверять схему. Первое, что надо посмотреть — выходное напряжение. Берем вольтметр и замеряем напряжение на выходе стабилизатора.

Удивительно, но на выходе всего лишь около 0,1 В! Что это может быть — очередное короткое замыкание? Или же это схема работает в каком-то странном режиме?

Увы, мы с вами снова наступили на те же самые грабли, на которые наступали неоднократно до этого, и, к великому сожалению, будем наступать еще не один раз. Итак, что мы имеем:

♦ мы собрали схему стабилизатора на основе рекомендуемой даташитом типовой схемы;

♦ мы проверили работу схемы на лампе накаливания и убедились в том, что она работает так, как надо;

♦ мы подключили схему к реальной нагрузке и убедились, что она перестала работать.

А вот теперь мы начинаем строить гипотезы, что же такое вдруг случилось с этой схемой, что она перестала работать? А ведь вместо построения гипотез мы должны были задать себе совсем другой вопрос — где ошибка в наших представлениях о работе конструкции!

Повторим мысленно то, о чем мы совсем недавно говорили — не бывает ошибочных конструкций, бывают ошибочные преставления об их работе! Конструкция, к нашему с вами сведению, всегда права. Если она выдает на выход 0,1 В напряжения, значит, именно это она и должна делать в данной конкретной ситуации, а то, что это никак не согласуется с нашими ожиданиями — так это проблема наших ожиданий, а вовсе не проблема работы конструкции. И наша с вами задача — не «измысливать» гипотезы — одна другой краше, — что там не так с электронами, а увидеть (подчеркну — не понять, а именно увидеть), в чем именно наши представления расходятся с действительностью.