Выбрать главу

А что нужно сделать для того, чтобы увидеть проблему?

Совершенно верно — нужно надеть себе на нос радиолюбительские «волшебные очки», иными словами, взять в руки осциллограф. И вот это — еще одно неписаное правило при разработке новых конструкций: первый прибор, которым мы лезем в схему, должен быть только осциллографом.

Второй, третий и прочие — по обстоятельствам, но первый — только он! Конечно, из этого правила есть исключения, например ВЧ и СВЧ техника — там осциллографы стоят такие деньги, что БМВ покажется детской игрушкой, — но исключения эти только подтверждают правило. Итак, собираем схему (рис. 8.14), подаем питание и смотрим, что у нас на выходе…

Рис. 8.14. Схема проверки стабилизатора

Превратности типовой схемы

А на выходе у нас получается очень интересная картина. Там, оказывается, вовсе не 0,1 В, как показал нам вольтметр, а очень короткие пачки буквально из нескольких импульсов вполне себе немаленькой амплитуды (точка А). И вот это сразу наводит на определенные размышления — это, возможно, срабатывает токовая защита. Ведь мы, исходя из соображений максимального потребления тока в рабочем режиме, рассчитали резистор в цепи истока под ток в 4 А, а при пуске этот ток будет раз в 5—10 больше (что мы уже установили экспериментальным путем, спалив один блок питания).

Кстати, зададим уж себе один, в высшей степени любопытный, вопрос: а какую причину мы отыскали бы, если бы начали делать выводы из показаний вольтметра? Утечка через канал транзистора?

Обратный ток через диод? Любые измерительные устройства, кроме осциллографа и некоторых весьма специальных приборов, всегда выдают в качестве результат измерений некие усредненные (интегральные) показатели.

В этом смысле наш вольтметр нам не наврал — среднее значения напряжения на выходе, наверное, и есть 0,1 В, вот только выводы из этого мы делаем совершенно превратные. Так же и частотомер, на входе которого каждые полсекунды присутствует частота 100 кГц, измерит ее как 50 кГц, и, в принципе, будет совершенно прав, вот только выводы из его показаний мы тоже сделаем совершенно превратные.

Как проверить наше предположение о срабатывании токовой защиты? Есть, очевидно, два пути:

♦ отключить эту самую токовую защиту, временно замкнув резистор в цепи истока полевого транзистора;

♦ попробовать подключить к нашему устройству меньшую нагрузку и посмотреть, как он на это отреагирует.

Первый путь сам по себе очевиден, но отключать защитные цепи в любом устройстве — это почти всегда лотерея: может повести, а, может, и нет. Второй путь мне кажется попроще — для этого нужно просто извлечь три лампы из четырех, и вновь выполнить прогон. Извлекаем, выполняем прогон.

Ждать пришлось довольно долго — почти пару минут, — но, в конце концов, нить накала лампы все-таки засветилась. На экране осциллографа при этом наблюдалась любопытная картина — длительность пачки импульсов по мере работы все увеличивалась и увеличивалась, и, наконец, режим «пачек» исчез, уступив место нормальному меандру без каких-либо перерывов. И, кажется, у нас уже есть этому объяснение.

Всякий раз при прохождении небольшой пачки импульсов нить накала лампы все-таки успевала слегка разогреться, а, следовательно, и немного увеличить свое сопротивление. Последующая пачка импульсов была уже немного подольше, потому что токовая защита срабатывала попозже, и таким образом, мало-помалу, нить накала и разогрелась до нормальной рабочей температуры.

А отсюда — и практическая идея — нужно сделать так, чтобы пуск устройства был еще более мягким, чем у нас есть сейчас, т. е. напряжение на выходе устройства нарастало бы намного медленнее, чем сейчас. Для этого, согласно даташиту, нужно существенно увеличить емкость конденсатора, подсоединенного к выводу «мягкого старта» микросхемы (на схеме он обозначен как SS). Но здесь нам придется основательно задуматься.

Дело в том, что емкость этого конденсатора нельзя увеличивать выше определенного предела. Практически во всех микросхемах, где в том или ином виде реализован «мягкий старт», параллельно этому конденсатору внутри микросхемы подключен транзистор, предназначенный для экстренного разряда конденсатора (например, при срабатывании токовой защиты). В этом случае после устранения перегрузки микросхема вновь сможет выполнить «мягкий старт». Но если емкость этого конденсатора окажется слишком большой, такой экстренный разряд может просто-напросто вывести транзистор из строя! И в результате у нас возникает дилемма — нужно ставить конденсатор большой емкости и нельзя ставить конденсатор большой емкости. Как быть?

Ну, самое очевидное в нашей ситуации — попытаться поискать что-либо на эту тему в Интернете. Хотя с изрядной долей уверенности можно сказать, что готового решения в нем на этот счет, скорее всего не найдется. Не найдется по той простой причине, что выполнить устройство, к которому одновременно предъявляются несколько взаимоисключающих требований — это уже не инженерная, а изобретательская задача! И при решении этой задачи важно четко определить саму проблему, в этой задаче скрытую.

В нашей книге не время и не место углубляться в теорию изобретательского творчества, скажем только, что одним из основоположников научного подхода к решению изобретательских задач является Г. С. Альтшулер и его интереснейшую книгу «Алгоритм изобретения» (которая, увы, давно стала библиографической редкостью) мы вам настоятельно советуем прочитать.

Отмечу только, что любое решение изобретательской задачи состоит, в первую очередь, в выявлении в этой задаче т. н. «технического противоречия», которое в нашем случае будет звучать так:

♦ для того, чтобы обеспечить как можно более плавное нарастание выходного напряжения стабилизатора, емкость конденсатора должна быть как можно большей;

♦ для того, чтобы не вывести из строя микросхему при срабатывании защиты, емкость конденсатора должна быть как можно меньше.

Инженерный подход к решению задачи подразумевает, что мы с вами должны выбрать конденсатор такой емкости, чтобы он уже был бы достаточен для выполнения первого требования, но еще не настолько большим, чтобы вывести микросхему из строя.

Изобретательский подход к задаче подразумевает совсем другое решение, а именно: нужно сделать так, чтобы заряжался конденсатор как большой-большой, а разряжался как маленький-маленький! И, как только мы сумеем сформулировать задачу именно таким образом, становится очевидным и решение ее — нужно сделать так, чтобы заряд и разряд конденсатора происходил разными путями.

И тут же память наша услужливая подскажет нам очень простенькую схемку (рис. 8.15). Несмотря на простоту, ее следует внимательно изучить.

Рис. 8.15. Вариант решения цепочки плавного пуска

При заряде конденсатора ток в этой схеме проходит по пути «эмиттерный переход транзистора», «конденсатор». Время заряда конденсатора определяется при этом током вывода микросхемы и емкостью конденсатора. Но ток вывода микросхемы идет не только через конденсатор, он проходит и через транзистор, и, вполне очевидно, через транзистор проходит большая его часть (в В раз больше, чем через конденсатор). А это значит, что и время заряда конденсатора в этой схеме будет в В раз больше, чем время заряда «отдельно стоящего» конденсатора. Если учесть, что современные составные транзисторы имеют коэффициент усиления, измеряемый десятками тысяч, то и конденсатор будет заряжаться так, как-будто он имеет емкость в десятки тысяч раз больше его реальной емкости. Разряд же конденсатора происходит по цепи «диод» «конденсатор», где никакого транзистора нет, а значит, и разряжаться он будет обычным образом.