Выбрать главу

7. Антиномия лжеца.

Для того чтобы обнаружить некоторые более специфические условия, выполняемые языками, в которых (или для которых) должно быть сформулировано определение понятия истины, полезно начать с обсуждения той антиномии, которая прямо включает в себя это понятие, а именно антиномии лжеца.

Для того чтобы получить эту антиномию в ясной форме[12], рассмотрим следующее предложение:

Предложение, напечатанное в этой статье на стр…, строка…, ― неистинно.

Для краткости заменим это предложение буквой 's'. В соответствии с нашим соглашением относительно адекватного употребления термина истинно мы утверждаем следующую эквивалентность вида (Т):

(1) 's' истинно тогда и только тогда, когда предложение, напечатанное в этой статье на стр…, строка…, неистинно.

С другой стороны, помня о значении символа 's', мы эмпирически устанавливаем следующий факт:

(2) 's' тождественно предложению, напечатанному в этой статье на стр…, строка… .

Теперь, благодаря известному закону теории тождества (закон Лейбница), из (2) следует, что в эквивалентности (1) выражение "предложение, напечатанное в этой статье на стр…, строка…" мы можем заменить символом 's'. Таким образом, мы получаем:

(3) 's' истинно тогда и только тогда, когда 's' неистинно.

Вот мы и пришли к очевидному противоречию.

Мне представляется, что с точки зрения научного прогресса было бы ошибочно и чрезвычайно опасно преуменьшать значение этой и других антиномий и рассматривать их как простые шутки или софизмы. Мы действительно сталкиваемся здесь с абсурдом, действительно вынуждены утверждать ложное предложение (поскольку (3), будучи эквивалентностью двух противоречащих друг другу предложений, необходимо ложно). Если мы серьезно относимся к своей работе, мы не можем смириться с этим фактом. Мы должны обнаружить его причину, т. е. должны рассмотреть предпосылки, на которые опирается антиномия, и отвергнуть по крайней мере одну из них, а затем проанализировать следствия, к которым это приводит для всей области нашего исследования.

Следует подчеркнуть, что антиномии играли важную роль в установлении основоположений современных дедуктивных наук. И как теоретико-множественные антиномии, в частности антиномия Рассела (связанная с понятием множества всех множеств, несодержащих себя в качестве собственного элемента), послужили исходным пунктом успешного продвижения к непротиворечивой формализации логики и математики, так антиномия лжеца и другие семантические антиномии дают толчок к построению теоретической семантики.

8. Противоречивость семантически замкнутых языков.

Анализируя предпосылки, приводящие к антиномии, мы замечаем следующее:

(I) Мы неявно допускаем, что язык, в котором построена эта антиномия, в дополнение к своим выражениям содержит также имена этих выражений и семантические термины, например, термин "истинно", относящийся к предложениям этого языка. Мы допускаем также, что все предложения, задающие адекватное употребление этого термина, могут быть сформулированы в нашем языке. Языки, обладающие такими свойствами, мы будем называть "семантически замкнутыми".

(II) Мы предполагаем, что в этом языке действуют обычные законы логики.

(III) Мы предполагаем, что в нашем языке можно формулировать и утверждать эмпирические посылки типа утверждения (2), входящего в наше рассуждение.

Оказывается, что предположение (III) не является существенным, так как можно построить антиномию лжеца без его помощи.[13] Но предположения (I) и (II) существенны. И поскольку каждый язык, удовлетворяющий обоим этим предположениям, является противоречивым, мы должны отбросить по крайней мере одно из них.

Было бы излишним рассматривать здесь следствия отбрасывания предположения (II), т. е. следствия изменения нашей логики (если это вообще возможно) хотя бы в наиболее элементарных и фундаментальных ее частях. Поэтому мы рассмотрим только одну возможность ― отказ от предположения (I). Мы принимаем решение не пользоваться языком, который семантически замкнут в указанном выше смысле.

вернуться

12

Дана проф. Я. Лукасевичем (Варшавский университет).

вернуться

13

Это можно сделать приблизительно следующим образом. Пусть S будет любым предложением, начинающимся со слов "Каждое предложение". Мы сопоставим S новое предложение S*, подвергая S двум следующим модификациям: заменяем в S первое слово "Каждое" словом "Это" (определенный артикль "The" ― Прим. перев.); после второго слова "предложение" мы вставляем все предложение S, заключенное в кавычки. Договоримся называть предложение S (само)применимым или не(само)применимым в зависимости от того, истинно или ложно сопоставленное ему предложение S*. Теперь рассмотрим следующее предложение:

Каждое предложение является не (само)применимым.

Легко показать, что сформулированное предложение должно быть и (само)применимым и не(само)применимым, следовательно, мы пришли к противоречию. Быть может, не вполне ясно, в каком смысле эта формулировка антиномии не включает эмпирической посылки, однако я не буду останавливаться на этом вопросе.