Подобные периоды разочарования служат важной цели – отделяют зерна от плевел.
Тем не менее, несмотря на все возникшие перед становлением искусственного интеллекта проблемы, у направления все же был припрятан в рукаве туз, о котором люди на начальном этапе разработок могли и не знать: закон Мура.
Постоянное развитие компьютерной технологии было обусловлено многими причинами, но, вне всякого сомнения, одним из основных решающих факторов была тенденция, которую впоследствии назвали законом Мура. Название вошло в употребление через пять лет после выхода в 1965 году статьи Гордона Мура, в то время директора отдела исследований и разработок компании Fairchild Semiconductor, а одноименное наблюдение описывает одну из наиболее важных тенденций технологии. В своей статье Мур представил график из четырех точек, показавший, что количество транзисторов, размещенных на кристалле интегральной микросхемы, регулярно удваивается. Схема повторялась в период с 1962 по 1965 год. Мур считал, что тенденция будет устойчивой, и выдвинул экстравагантный прогноз, согласно которому в пределах десятилетия плотность электронных компонентов возрастет с 64 до более чем 65 000. Это увеличение – более чем в тысячу раз – соответствует удвоению в течение каждого года (210 равно 1024). Позже, в 1975 году, Мур пересмотрел прогноз и сказал, что в будущем удвоение будет происходить каждые два года.8
Закон Мура – не столько непреложный закон физики или природы, сколько наблюдение за характером технологического прогресса. Тем не менее он оставался движущей силой экономических бизнес-моделей на протяжении более полувека. Эта тенденция, как и другие, которые служат стимулом для развития электроники, привела к появлению более быстрых и мощных компьютеров и произвела цифровую революцию, которая уже изменила наш мир и общество. Из закона Мура следовало, что тенденция размещать возрастающие вычислительные мощности на меньшем пространстве позволяла снизить требования к источнику питания, выделение тепла и, самое важное, затраты на процессорный цикл.
По некоторым показателям, в последние годы темп замедлился, и появились прогнозы, что закон Мура больше не работает. Это значит, что промышленность достигла предела в развитии технологий и методов производства. Как отметил изобретатель, футуролог и писатель Рэй Курцвейл, интегральная микросхема, о которой говорилось в законе Мура, всего лишь пятая парадигма более масштабной тенденции, которую можно отследить с начала XX века. Электромеханическая обработка, реле, вакуумные трубки и транзисторы также развивались по схеме удвоения вычислительной мощности по отношению к затратам в течение некоторого времени. Возникнет ли шестая, полупроводниковая парадигма? Многие компании делают на это ставку и занимаются исследованиями и разработками, которые, по их мнению, сделают полупроводники основной компьютерной технологией будущего.
Что это означает в реальности? Смартфоны, которыми мы пользуемся сегодня, обладают намного большей мощностью обработки данных, чем вся программа посадки на Луну «Аполлона-11» сорок лет назад. Уди Манбер и Петер Норвиг из Google сообщили, возможно, еще более впечатляющие статистические данные, написав в 2012 году:
Вводя один-единственный запрос в строку поиска Google или просто разговаривая по телефону, вы запускаете вычислительные мощности, аналогичные тем, что понадобились для того, чтобы отправить в космос Нила Армстронга и еще одиннадцать космонавтов. Не для собственно полетов, но для всех расчетов, выполненных при планировании и осуществлении семнадцати миссий программы «Аполлон» за одиннадцать лет9.
Нам легко забыть, какими объемами процессорной мощности мы оперируем в повседневной жизни, но еще большая проблема – понять, как сильно все изменилось за относительно небольшой период времени.
Развитие, о котором говорится в законе Мура и другие «законах» технологии, например, в законе Крайдера (плотность записи на магнитные диски удваивается каждые восемнадцать месяцев) или законе Меткалфа (полезность сети пропорциональна квадрату численности ее пользователей) идет по экспоненте10. При удвоении чего-либо с постоянной скоростью, раз в день, раз в год или столетие, мы называем это ростом в геометрической прогрессии. Такой темп роста может встречаться где угодно от биологических систем, таких как клетки, до популяций животных и сложных процентов в инвестициях.