Выбрать главу

По этой формуле для любого  можно найти hmax. Если положить H = 82 км, то ψ = 9°09′, H/R = 0,01288. При использовании формулы (8) нужно ввести в значение  поправку за рефракцию, которая для касательного луча равна удвоенной горизонтальной рефракции, т. е. Δ = -1°09′. Поэтому положим

 = ' + Δ, (9)

где ' — эфемерное (неискаженное рефракцией) погружение Солнца. Таким образом, данная величина hmax будет соответствовать меньшему погружению Солнца под горизонт, чем если бы рефракции не было.

Однако солнечные лучи, проходящие у самой поверхности Земли, испытывают весьма сильное поглощение в воздухе, и, как полагали некоторые ученые, вряд ли могут эффективно освещать серебристые облака. Если принять, что только лучи, проходящие выше некоторого уровня H0, способны освещать их, то вместо формулы (7) мы будем иметь следующее выражение для

Если, например, H0 = 30 км (уровень слоя озона), то ψ = 7°16′ и учитывать рефракцию уже не нужно. Из формулы (8) следует, что если  = ψ, то hmax = 90°, т. е. серебристые облака могут наблюдаться до самого зенита, а при  < ψ они могут переходить через зенит. Такие случаи бывают крайне редко, когда облака достаточно ярки, чтобы наблюдаться при столь малых погружениях Солнца, когда небо еще довольно светлое.

Напомним, что погружению Солнца на 6° соответствует конец гражданских сумерек, когда на небе появляются самые яркие звезды. Промежуток времени между погружением Солнца на 6 и 12° называется навигационными сумерками, а между 12 и 18° — астрономическими сумерками. При погружении Солнца сумеречный сегмент все уменьшается и при  = 18° исчезает — наступает ночь.

В самом деле, нетрудно показать на основании формул (7) и (8), что при условии  = 2ψ получим hmax = 0. Следовательно, серебристые облака могут наблюдаться при  =< 18°,3, а с учетом рефракции при  =< 19°,5. Если же принять H0 = 30 км, то мы получим более строгое условие =< 14°,5.

Анализ наблюдений серебристых облаков в 1957–1959 гг. на 200 метеостанциях Гидрометслужбы СССР показал, что облака наблюдались в интервале  от 2° до 21° (в 1958–1959 гг. — только до 19°). Это означает, что H0 < 30 км и весьма близко к нулю. Правда, здесь примешивается еще один фактор. До сих пор во всех расчетах мы принимали Н = 82 км, тогда как истинная высота серебристых облаков может быть и больше. Так, переход Н = 90 км увеличит допустимое  еще на один градус.

Возможность различить сребристое облако на фоне сумеречного неба зависит не только от яркости самого облака Bc, но и от яркости фона неба Вн, а точнее, от величины контраста между ними К:

K = (BcВн)/Bc (11)

Как нетрудно заметить, величина К может изменяться в пределах от К = 0 (BcВн) до К = 1 (Вн = 0). Но мы уже видели, что на совершенно темном небе серебристые облака наблюдаться не могут, так как тогда они не будут освещены солнечными лучами. Наибольшее отмеченное при наблюдениях значение контраста равно 0,70 (серебристые облака в 3,3 раза ярче фона неба).

Яркость серебристых облаков. Определения яркости серебристых облаков в абсолютных единицах неоднократно производились визуально и по фотографиям. По многим определениям за 1936–1961 гг. яркость серебристых облаков заключается в пределах от 10-8 до 3∙10-4 стильба. Напомним, что стильб (сб) — это яркость объекта, освещенность которого равна 104 люксов (лк) на стерадиан. Так, яркость диска Солнца вне атмосферы равна 2∙105 сб, освещенность от него (опить-таки вне атмосферы) площадки, перпендикулярной к лучам Солнца, равна 136 000 лк, а яркость абсолютно белого экрана, поставленного перпендикулярно лучам Солнца на границе атмосферы, равна

136000/10000∙π = 4,3 сб

На всякий случай приведем соотношение стильба для ночного зрения человека с энергетическими единицами (это соотношение вообще зависит от спектральной чувствительности глаза или иного приемника излучения): 1 сб = 5,8∙10-4 Вт/(см2∙ср).