Ответ на эти три вопроса дала конденсационная (ледяная) гипотеза, не раз высказывавшаяся разными лицами в разные годы, но получившая серьезное количественное обоснование лишь в 1952 г. в работе И. А. Хвостикова.
Ход рассуждений И. А. Хвостикова был примерно таков. По внешнему виду серебристые облака очень похожи на перистые, которые, как хорошо известно, состоят из кристалликов льда. Значит, и для серебристых облаков можно предположить такое же строение. Но для того чтобы водяной пар в атмосфере мог конденсироваться в лед, нужны определенные условия. Именно, парциальное давление водяного пара рН2О в атмосфере должно превосходить упругость насыщенного пара над льдом при данной температуре Е(Т). Между тем
рН2О = q∙P, (17)
где q — удельная концентрация водяного пара (отношение его концентрации к плотности воздуха), Р — давление атмосферы на дайной высоте. Упругость насыщенного пара резко падает с понижением температуры. Таким образом, необходимое и достаточное условие для конденсации водяною пара в кристаллики льда, согласно И. А. Хвостикову, выглядит так:
q∙P < Е(Т). (18)
И. А. Хвостиков построил по известным тогда данным о строении верхних слоев атмосферы кривые изменения давления Р и упругости насыщенного пара E с высотой. Получилась такая картина (рис. 27).
Рис. 27. Диаграмма И. А. Хвостикова (1952 г.).
Вся атмосфера делится по высоте на четыре области:
— область I (от поверхности до высоты 30 км), где Р > Е и наблюдаются обычные тропосферные, а также перламутровые облака, появляющиеся иногда на высотах 22÷30 км;
— область II между высотами 30÷75 км, где Р < Е и никакие облака никогда не наблюдались;
— узкая область III в интервале высот 75÷85 км, где и наблюдаются серебристые облака и где снова выполняется условие Р > Е;
— область IV выше 85 км, где опять становится Р < Е и облака не наблюдаются.
Работа И. А. Хвостикова произвела большое впечатление, но и вызвала сильную критику со стороны приверженцев метеорной гипотезы происхождения серебристых облаков. Они указывали, в частности, что в области III условие Р > Е хотя и выполняется, но держится буквально «на волоске»: стоит температуре в мезопаузе немного повыситься, и условие Р > Е выполняться не будет. Кроме того, условие Р > Е — необходимое, но недостаточное для конденсации водяного пара; достаточным является условие (18), а величина q — малое число. Иначе говоря, если даже общее давление воздуха будет больше упругости насыщенного пара, парциальное давление водяного пара может оказаться недостаточным, чтобы процесс конденсации имел место.
В то время данных о температуре мезопаузы было очень мало. В 30-е годы господствовало представление о довольно высоких температурах в этой области атмосферы — около 300 К и более. Температуру определяли косвенными методами: по скорости распространения звука от сильных взрывов, по торможению метеоров и т. д. Запуски ракет с приборами в верхние слои атмосферы в конце 40-х — начале 50-х годов значительно изменили наши сведения о температуре мезопаузы в сторону ее существенного понижения.
Так, в «экспериментальной схеме атмосферы» Национального совещательного комитета по аэронавтике США (NACA), опубликованной в начале 1947 г., минимальная температура мезопаузы была определена в 240 К. Но уже полет исследовательской ракеты 7 марта 1947 г. Дал минимальную температуру 200 К, а обработка наблюдений распространения звуковых волн от сильного взрыва на о. Гельголанд 18 апреля 1947 г, дала Тmin = 173 К. В 1953–1954 гг- были опубликованы средние кривые распределения температуры, дававшие Тmin= 190÷195 К.
Но вскоре стало ясно, что в мезопаузе могут наблюдаться и гораздо более низкие температуры. В 1957 г. были опубликованы результаты большой серии советских ракетных экспериментов, проводившихся под руководством В. В. Михневич в европейской части СССР с июня по сентябрь, т. е. в тот сезон и на тех широтах, когда и где наблюдаются серебристые облака. Был зарегистрирован четкий минимум температуры на высоте 80–85 км с Тmin = 150 К. Годом позже бельгийский аэролог М. Николе на основании анализа поглощения рентгеновских лучей на больших высотах получил Тmin = 160 К. Наконец, запуски ракет, проведенные в летний период 1958 г. Морской исследовательской лабораторией США в форте Черчилль (широта около 59°), показали Тmin = 165 К.