Выбрать главу

Вавилов не был ученым-атомником в широком смысле. Фотоны, которые он изучал, являлись только частью необъятной области простейших частиц материи. Но он исследовал их в их взаимодействии с молекулами и атомами. Он применял законы квантовой механики, и его открытия обогащали теорию и практику науки о микромире. Он раскрывал дверь в мир могучих невидимок и заставлял их работать на человека.

Много на земле профессий, которые по самому своему характеру являются добрыми и которые хорошо совмещаются только с добрыми же людьми. Пример: врачи или учителя. Особенно много таких профессий в нашей стране.

Все открытия Сергея Ивановича, все его замечательные работы в области физической оптики раскрывали только добрые стороны микрокосма. Все они служили благу человека и ничему иному. Сергей Иванович Вавилов был настоящим рыцарем доброй силы, таящейся в недрах вещества и в световых потоках.

Даже самые, казалось бы, отвлеченные теоретические положения Вавилова в конечном счете оборачивались полезными делами практики. Хороший тому пример — история открытия явления, сейчас широко известного как «свечение Вавилова — Черенкова».

В 1932 году, когда Сергей Иванович находился уже в Ленинграде, в его лаборатории на набережной Невы стал работать молодой аспирант Павел Алексеевич Черенков. Подобно многим другим, и Черенков прошел тщательную тренировку для работы в темноте. Свой рабочий день он начинал с того, что добрый час сидел в совершенно темной комнате, ничего не делая, затем подходил к приготовленным заранее приборам и приступал к исследованиям.

Вавилов хорошо разбирался в людях и быстро выносил почти всегда безошибочные суждения о том, что может, а чего не может тот или иной сотрудник. Оценив очень скоро способности и усидчивость своего нового аспиранта, Сергей Иванович поручил ему сложное и длительное исследование люминесценции ураниловых солей под действием жестких невидимых гамма-лучей. Для юноши потянулись долгие, порой окрыляющие, но чаще полные недоумения и загадок дни опытов…

Ураниловая соль, растворенная в воде в определенной концентрации, светится под влиянием гамма-облучения. В полном соответствии с законом Вавилова — Стокса огромные гамма-кванты источника излучения (ампулы с радием) преобразуются в малые кванты видимого света.

Люминесценция налицо.

«Интересно, — рассуждал Черенков, — как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водой? Важна, конечно, не общая картина, а точно выраженный физический закон».

И вот, посоветовавшись с руководителем, аспирант Вавилова доводит концентрацию до некоторого максимума, затем постепенно понижает ее.

Все идет, как ожидалось: меньше растворено солей — меньшая люминесценция. Это естественно, так как холодное свечение вызывается возбуждением молекул соли, а не воды.

Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может.

Но что это? Черенков не верит своим глазам.

Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело?

Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. Но что это? Чистая вода светится так же, как и слабый раствор. А ведь до сих пор все были уверены, что дистиллированная вода не способна к люминесценции.

Черенков взволнован и рассказывает своему руководителю о неудачном опыте. Но Сергей Иванович тоже не знает, чем объяснить странное свечение.

— Может быть, вода все-таки не совсем чиста? Не растворяется ли в ней — пусть в самой ничтожной доле — стекло? Стекло засоряет воду, и в результате возникает этот непонятный эффект.

Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма-лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля.

Снова приспособление к темноте, снова наблюдение, и… опять непонятное свечение.

— Это не люминесценция, — твердо говорит Вавилов. — Это какое-то новое, неизвестное пока науке оптическое явление.

Вскоре всем становится ясно, что в опытах Черепкова имеют место два вида свечения. Один из них — люминесценция. Но люминесценция наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма-облучения мерцание вызывается иной причиной…

А как поведут себя иные жидкости? Может быть, дело не в воде?

Аспирант наполняет тигель различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Разница не превышает 25 процентов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт — всех слабее, но так, что разница их свечений не превышает 25 процентов.

Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими тушителями обычной люминесценции. Он добавляет в жидкости азотнокислое серебро, йодистый калий, анилин… Эффекта никакого. Свечение не прекращается.

По совету руководителя он нагревает жидкость. На люминесценцию это влияет сильно: она ослабевает и прекращается совсем. Но в данном случае яркость свечения нисколько не меняется. Еще одно подтверждение правоты Вавилова, что здесь какое-то особое, доныне неизвестное явление.

Какое же именно?

И вот в 1934 году в «Докладах Академии наук СССР» появляются первые два сообщения о новом виде излучения: П. А. Черенкова, излагающего подробно результаты экспериментов, и С. И. Вавилова. Руководитель высказывает предположение, что свечение вызывается не самими гамма-лучами, а свободными быстрыми электронами, возникающими при прохождении гамма-лучей в среде.

Эта точка зрения была подтверждена впоследствии. Подтвердил ее тот же Черенков, а затем и американские физики Коллинз и Рейлинг.

У таинственного свечения была установлена одна особенность: его нельзя было увидеть, став где ни попало рядом с прибором. Наблюдатель видел свечение только в пределах узкого конуса, ось которого совпадала с направлением гамма-излучения.

Учтя это существенное обстоятельство, Черенков поместил свой прибор в сильное магнитное поле. Он тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, какими являются электроны, и невозможно для электромагнитных волн, не имеющих заряда.

Источник возникновения электронов был ясен с самого начала: гамма-лучи радия выбивали их из атомов жидкости. Значит, Сергей Иванович прав: свечение вызывается электронами.

Позднее аспирант Вавилова воспользовался непосредственно бета-лучами, представляющими собою, как известно, поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма-облучении.

Американцы повторили опыт Черенкова, причем проделали это с большим размахом: они применили мощный поток электронов, ускорив его электростатическим генератором до огромной энергии в 2 миллиона электроновольт. Результаты Коллинза и Рейлинга во всем принципиальном совпали с результатами русского физика.

Итак, загадочное оптическое явление возникает только там, где налицо движение быстрых электронов. Ответ на вопрос № 1 был получен. Вопрос № 2, требовавший ответа, заключался в следующем: как выглядит механизм преобразования движения электронов в движение фотонов необычного свечения?

Если сыпать на сковородку горох, то какая-то доля энергии гороха превратится в звук. Если на пути быстрых электронов поставить металлическое препятствие, то некоторая часть энергии торможения электронов превратится в рентгеновские лучи. Не наблюдается ли чего-нибудь подобного и в черенковских опытах?