Выбрать главу

Определение ценности перевода клиентов из одного сегмента NPS в другой

Многих практиков, занимающихся Net Promoter, просят предоставить бизнес-кейс для оправдания инвестиций в систему или по меньшей мере обосновать, почему эти вложения принесут финансовую выгоду. Есть много способов продемонстрировать ценность таких инвестиций, в том числе сложные в вычислительном отношении методы прогнозирования отдачи инвестиций, но порой самый простой подход оказывается наиболее эффективным. Во многих случаях для этого нужна всего лишь достоверная внутренняя финансовая информация и ответы на несколько конкретных вопросов анкеты.

Определение ценности на основании финансовых данных

Если в вашем распоряжении есть данные, которые можно привязать непосредственно к сегментам клиентов или корпоративным заказчикам, то проще всего разработать экономическую модель, демонстрирующую связь между NPS и ростом финансовых показателей. Такая модель должна учитывать временной лаг между повышением NPS и ростом доходов компании. В ее основе лежат два предположения: во-первых, индекс искренней лояльности служит опережающим индикатором роста; во-вторых, увеличение NPS влечет за собой повышение финансовых показателей (например, увеличение доли компании в расходах клиента).

В следующем примере мы проанализируем зависимость между NPS и финансовым ростом крупного поставщика программного обеспечения, работающего в сфере В2В. Мы использовали модель, позволяющую рассчитать рост доходов компании по каждому сегменту лояльности. Этот процесс происходил следующим образом:

1. Мы собрали данные об уровне лояльности и объеме доходов по всем ключевым клиентам примерно за пять кварталов. Эффективное использование этой модели зависит от возможности отслеживать и лояльность, и доходы на уровне компании-клиента.

2. Анализ данных о доходах показал, что их объем по каждой компании увеличивается в период продления лицензий (при этом увеличение расходов клиентов на покупку новых продуктов оказывало значимое, но не очень большое влияние). В случае большинства заказчиков продление срока действия лицензий производилось раз в год. Ради простоты мы проанализировали финансовые данные каждого клиента за четыре квартала исходя из предположения, что большинство из них продлит лицензию в течение этого периода.

3. В качестве финансового показателя был выбран рост доходов за один год (например, измеряется как изменение доходов за период с первого квартала одного года по отношению к первому кварталу следующего). Использование роста доходов вместо абсолютного показателя позволяло предотвратить искажение результатов из-за вклада относительно небольшого числа крупных клиентов в объем доходов компании. По той же причине из рассмотрения были исключены выбросы в данных – заказчики с резко отклоняющимися показателями (например, те, при работе с кем темпы роста доходов более чем в два раза превышали среднеквадратическое отклонение от среднего показателя роста).

4. В качестве показателя лояльности мы использовали индекс искренней лояльности. Каждая компания-клиент была отнесена к одной из трех категорий NPS (промоутеры, нейтралы или детракторы) на основании среднего балла рекомендаций отдельных респондентов, принимавших участие в опросе от имени клиента.

5. Мы ввели временной лаг между повышением лояльности и финансовым ростом. Во время предыдущих исследований мы видели, что временной лаг между NPS и ростом составляет, как правило, от трех месяцев до одного года. В связи с этим по каждому клиенту мы использовали значение NPS за один квартал до наступления периода, который использовался для расчета годового роста доходов.

Полученные результаты представлены на рис. 2.5. Как мы и ожидали, на клиентов из числа промоутеров приходится самый большой объем продаж. Обеспечивая компании увеличение доходов в размере 11 процентов в год, эти заказчики становятся движущим фактором роста компании. На сегмент нейтралов приходится 38 процентов общего количества клиентов, однако их весьма скромный вклад в рост компании не идет ни в какое сравнение с положительным экономическим влиянием промоутеров. На детракторов приходится совсем небольшое количество клиентов (12 процентов), но они оказывают негативное влияние на рост доходов, составляющий в данном случае отрицательную величину −6 процентов. В общей сложности процент клиентов в каждом сегменте лояльности, взвешенный по среднему темпу роста, приблизительно соответствует общему темпу роста компании за тот же период (около 5,3 процента). Таким образом, данная модель однозначно подтверждает вывод, что клиенты с высоким NPS обеспечивают более высокий рост доходов, тогда как влияние детракторов носит прямо противоположный характер.