Выбрать главу

Each long DNA double helix is called a chromosome. Humans have 23 pairs of chromosomes. The total number of As, Cs, Gs, and Ts is about 4 billion pairs of letters in our double-stranded hereditary instructions. The information content is roughly that of a thousand different books with the size and fineness of print of the one you’re reading at this moment. While the variation from species to species is large, similar numbers apply to many other “higher” organisms.

Those same proteins that surround the DNA (themselves manufactured, of course, on instructions from the DNA) are responsible for switching genes on and off, in part by uncovering and covering the DNA. At appointed times, the exposed ACGT information of the DNA makes copies of certain sequences and dispatches them as messages out of the nucleus into the rest of the cell; in response to the commands in these telegrams, new molecular machine tools, the enzymes, are manufactured. They in turn control all the metabolism of the cell and all its interactions with the outside world. As with the children’s game called “Telephone” in America and “Grandmother’s Whispers” in Britain—in which a message is whispered successively by each player into the ear of the next—the longer the sequence of relays, the more likely it is that the communication will be garbled.

It’s a little like a kingdom with the distant DNA, isolated and guarded in the nucleus, as the monarch. The chloroplasts and mitochondria play the role of proudly independent dukedoms whose continuing cooperation is essential to the well-being of the realm.* Everybody else, every other molecule or complex of molecules working for the cell, has as its sole obligation punctilious obedience to orders. Great care must be taken that no message is mislaid or misunderstood. Occasionally, decisions are delegated to other molecules by the DNA, but generally every machine in the cellular toolshop is on a short tether.

However, even to the rank-and-file molecular workers in the cell, the monarch often seems half-witted and his decrees garbled and meaningless. As we’ve mentioned, most DNA of humans and other eukaryotes is genetic nonsense which the START and STOP instructions—like prudent assistants to a mad president—duly ignore. Immense reams of nonsense are in effect thoughtfully preceded by the notice “DRIVEL AHEAD. PLEASE IGNORE,” and followed by the message “END OF DRIVEL.” Sometimes the DNA goes into a stuttering frenzy in which the same ravings are repeated over and over. In the kangaroo rat of the American Southwest, for example, the sequence AAG is repeated 2.4 billion times, one after the other; TTAGGG, 2.2 billion times; and ACACAGCGGG, 1.2 billion times. Fully half of all the genetic instructions in the kangaroo rat are these three stutters.4 Whether repetition plays another role—maybe some internecine struggle for control by different gene complexes inside the DNA—is unknown. But superposed on precision replication and repair, and the meticulous preservation of DNA sequences from ages past, there is an element in the life of the eukaryotic cell that seems a little like farce.5

Some 2 billion years ago, several different hereditary lines of bacteria seem to have begun stuttering—making full copies of parts of their hereditary instructions over and over again; this redundant information then gradually specialized, and, excruciatingly slowly, nonsense evolved into sense.6 Similar repetitions arose early in the eukaryotes. Over long periods of time, these redundant, repetitive sequences undergo their own mutations, and sooner or later there will be, by chance, rare short passages among them that begin to make sense, that are useful and adaptive. The process is much easier than the classic imaginary experiment of the monkeys poking at typewriter keys long enough that eventually the complete works of William Shakespeare emerge. Here, even the introduction of a very short new sequence—representing only a punctuation mark, say—may be able to increase the survival chances of the organism in a changing environment. And here, unlike the monkeys at their typewriters, the sieve of natural selection is working. Those sequences that are slightly more adaptive (to continue the metaphor, we might say those sequences that correspond even slightly to Shakespearean prose—“TO BE OR,” immersed in gibberish, would be a start) are preferentially replicated. Out of randomly changing nonsense, the accidental bits of sense are preserved and copied in large numbers. Eventually, a great deal of sense emerges. The secret is remembering what works. Just such a drawing forth of meaning from random sequences of nucleotides must have happened in the very earliest nucleic acids, around the time of the origin of life.

An illuminating computer experiment analogous to the evolution of a short DNA sequence was performed by the biologist Richard Dawkins. He starts with a random sequence of twenty-eight English-language letters (spaces are counted as letters):

WDLTMNLT DTJBKWIRZREZLMQCO P.

His computer then repeatedly copies this wholly nonsensical message. However, at each iteration there is a certain probability of a mutation, of a random change in one of the letters. Selection is also simulated, because the computer is programmed to retain any mutations that move the sequence of letters even slightly toward a pre-selected goal, a particular, quite different sequence of twenty-eight letters. (Of course natural selection does not have some final ACGT sequence in mind, but—in preferentially replicating sequences that improve, even by a little, the fitness of the organism—it comes down to the same thing.) Dawkins’s arbitrarily chosen twenty-eight-letter sequence, toward which his selection was aiming, was

METHINKS IT IS LIKE A WEASEL.

(Hamlet, feigning madness, is teasing Polonius.)

In the first generation, one mutation in the random sequence occurs, changing the “K” (in DTJBKW …) to an “S.” Not much help yet. By the tenth generation, it reads

MDLDMNLS ITJISWHRZREZ MECS P,

and by the twentieth,

MELDINLS IT ISWPRKE Z WECSEL.

After thirty generations, we are at

METHINGS IT ISWLIKE B WECSEL,

and by forty-one generations, we’re there.

“There is a big difference,” Dawkins concludes, “between cumulative selection (in which each improvement, however slight, is used as a basis for future building), and single-step selection (in which each new ‘try’ is a fresh one). If evolutionary progress had had to rely on single-step selection, it would never have got anywhere.”7

Randomly varying the letters is an inefficient way to write a book, you might be thinking. But not if there are an enormous number of copies, each changing slightly generation upon generation, the new instructions constantly tested against the demands of the outside world. If human beings were devising the volumes of instruction contained in the DNA of the given species, we would, we might offhand imagine, just sit down and write the thing out, front to back, and tell the species what to do. But in practice we are wholly unable to do this, as is DNA. We stress again, the DNA hasn’t the foggiest notion a priori about which sequences are adaptive and which are not. The evolutionary process is not omnicompetent, far-seeing, crisis-avoiding, top-down. It is instead trial-and-error, short-term, crisis-mitigating, bottom-up. No DNA molecule is wise enough to know what the consequences will be if one segment of a message is changed into another. The only way to be sure is to try it out, keep what works, and run with it.

The more you know how to do, the more advanced you are—and, you might think, the better your chances for survival. But the DNA instructions for making a human being comprise some 4 billion nucleotide pairs, while those for a common one-celled amoeba contain 300 billion nucleotide pairs. There is little evidence that amoebae are almost a hundred times more “advanced” than humans, although the proponents of only one side of this question have been heard from to date. Again, some, maybe even most, of the genetic instructions must be redundancies, stutters, untranscribable nonsense. Again we glimpse deep imperfections at the heart of life.