Выбрать главу

Luckily, though, there are organisms alive today that are similar—in some cases, very similar—to our ancestors. The beings that left stromatolite fossils probably performed photosynthesis and in other respects behaved as contemporary stromatolitic bacteria do. We learn about them by examining their surviving close relatives. But we cannot be absolutely sure. For example, ancient organisms were not necessarily and in all respects simpler than modern ones. Viruses and parasites, in general, show signs of having evolved by loss of function from some more self-sufficient forebear.

Many features in the biological landscape arrived late. Sex, for example, doesn’t seem to have evolved until three quarters of the history of life till now had passed. Animals big enough for us to see—had we been there—animals made of many different kinds of cells, also do not seem to have emerged until almost three quarters of the way between the origin of life and our time. Except for microbes, there were no beings on the land until something like 90%, and no creatures with big brains for their body sizes until about 99% of the history of life thus far was over.

Enormpus gaps yawn through the fossil record, although less so now than in Darwin’s time. (If there were more paleontologists in the world, we’d doubtless be a little further along.) From the comparatively low rate of discovery of new fossils, we know that huge numbers of ancient organisms have not been preserved. There’s something poignant about all those species—some ancestral to humans, on some sturdy trunk of our family tree, most not—about whom we know nothing, not a single example of them having survived, even in fossil form, to our own time.

Even when the incompleteness of the fossil record is taken into account, the diversity or “taxonomic richness” of life on Earth is found to have been steadily increasing, especially in the last 100 million years.9 Diversity seems to have peaked just as humans were really getting going, and has since declined markedly—in part because of the recent ice ages, but in larger part because of the depredations of humans, both intentional and inadvertent. We are destroying the diversity of beings and habitats out of which we emerged. Something like a hundred species become extinct each day. Their last remnants die out. They leave no descendants. They are gone. Unique messages, painstakingly preserved and refined over eons, messages that a vast succession of beings gave up their lives to pass on to the distant future are lost forever.

More than a million species of animals are now known on Earth, and perhaps 400,000 species of eukaryotic plants. There are at least thousands of known species of other organisms, non-eukaryotes, including bacteria. Doubtless we have missed many, probably most. Some estimates of the number of species range beyond 10 million; if so, we have even glancing acquaintance with less than 10% of the species on Earth. Many are becoming extinct before we even know of their existence. Most of the billions of species of life that have ever lived are extinct. Extinction is the norm. Survival is the triumphant exception.

We’ve sketched the changes on the Earth’s surface at the end of the Permian Period, some 245 million years ago; they resulted in the most devastating biological catastrophe so far displayed in the fossil record. Perhaps as many as 95% of all the species then living on Earth became extinct.* Many kinds of filter-feeding animals attached to the ocean floor, beings that had for hundreds of millions of years characterized life on Earth, disappeared. Ninety-eight percent of the families of crinoids became extinct. We don’t hear much about crinoids these days; sea lilies are their surviving remnant. Wholesale extinctions also occurred among the amphibians and reptiles that had settled the land. On the other hand, sponges and bivalves (like clams) did comparatively well in the late Permian extinction—one consequence of which is that they are still plentiful on Earth today.

Following mass extinctions it typically takes 10 million years or more for the variety and abundance of life on Earth to recover—and then, of course, there are different organisms around, perhaps better adapted to the new environment, perhaps with better long-term prospects, or perhaps not. In the millions of years following the end of the Permian Period, volcanism subsided and the Earth warmed. This killed off many land plants and animals that had been adapted to the late Permian cold. Out of this set of cascading climatic consequences, conifers and ginkgoes emerged. The first mammals evolved from reptiles in the new ecologies established after the Permian extinctions.

Of all the species of animals alive at the end of the Permian, only about twenty-five of them, it is estimated, have left any descendants at all; ten of which account for 98% of the contemporary families of vertebrates, which comprise about forty thousand species.10 The rate of evolutionary change is full of fits and starts, blind alleys and sweeping change—the latter driven often by the first filling of a previously untenanted ecological niche. New species appear quickly and then persist for millions of years. In only the last 2% or 3% of the history of life on Earth, the extravagant diversification of the placental mammals has producedshrews, whales, rabbits and mice, anteaters, sloths, armadillos, horses, pigs and antelopes, elephants, sea cows, wolves, bears, tigers, seals, bats, monkeys, apes, and men11

For the vast bulk of Earth history, until just recently, not one of these beings had existed. They were present only potentially.

Think of the genetic instructions of a given being, perhaps a billion ACGT nucleotide pairs long. Randomly change a few nucleotides. Perhaps these will be in structural or inactive sequences and the organism is in no way altered. But if you change a meaningful DNA sequence, you change the organism. Most such changes, as we keep saying, are maladaptive; except in rare instances, the bigger the change, the more maladaptive it is. For all of mutation, gene recombination, and natural selection put together, the continuing experiment of evolution on Earth has brought into being only a minute fraction of the range of possible organisms whose manufacturing instructions could be specified by the genetic code. The vast bulk of those beings, of course, would be not merely maladapted, not just freaks, but wholly inviable. They could not be born alive. Nevertheless, the total number of possible functioning, living beings is still vastly greater than the total number of beings who have ever been. Some of those unrealized possibilities must be, by any standard we wish to adopt, better adapted and more capable than any Earthling who has ever lived.

——

Sixty-five million years ago most of the species on Earth were snuffed out—probably because of a massive cometary or asteroidal collision. Among those killed off were all the dinosaurs, which had for nearly 200 million years—from before the breakup of Gondwanaland—been the dominant species, the ubiquitous masters of life on Earth. This extinction event removed the chief predators of a small, fearful, cowering nocturnal order of animals called the mammals. If not for that collision—a late step in the tidying up of interplanetary space of the remaining worlds on eccentric orbits—we humans and our primate ancestors would never have come to be. And yet, if that comet had been on a slightly different trajectory, it might have missed the Earth entirely. Perhaps, in its many relays around the Sun, its ices would all have melted and its rocky and organic contents slowly spewed as fine powder into interplanetary space. Then all it would have provided for life on Earth would have been a periodic shower of meteors, perhaps admired by some newly-evolved, curious, large-brained reptile.

On the scale of the Solar System, the extinction of the dinosaurs and the rise of the mammals seem to have been a very near thing. The causality corridor, figuratively speaking, was only inches wide. Had the comet been traveling a little slower or faster or headed in a slightly different direction, no collision would then have occurred. If other comets that in our real history missed the Earth had been on slightly different trajectories, they would have hit the Earth and killed off life in some different epoch. The cosmic collision roulette, the extinction lottery, reaches into our own time.