Выбрать главу

——

Embarrassingly, biologists don’t fully understand what sex is for. In this respect the situation has hardly changed since 1862 when Darwin wroteWe do not even in the least know the final cause of sexuality; why new beings should be produced by the union of the two sexual elements … The whole subject is as yet hidden in darkness.

Through 4 billion years of natural selection, instructions have been honed and fine-tuned—more elaborate, more redundant, more foolproof, more multiply capable instructions—sequences of As, Cs, Gs, and Ts, manuals written out in the alphabet of life in competition with other similar manuals published by other firms. The organisms become the means through which the instructions flow and copy themselves, by which new instructions are tried out, on which selection operates. “The hen,” said Samuel Butler, “is the egg’s way of making another egg.” It is on this level that we must understand what sex is for.

We do understand much of the molecular machinery of sex. To begin with, let’s consider some of those microbial beings that routinely do what many people would consider impossible—reproducing without sex*: Once every generation their nucleic acids faithfully copy themselves out of the A, C, G, and T molecular building blocks they manufacture for the purpose. The two functionally identical DNAs then each take half the cell and run—a little like a property settlement in a divorce. Sometime later, the process repeats itself. Each generation is a dreary repetition of the one before, and every organism is the spitting image—nearly identical, down to the last mitochondrion and flagellar propulsion system—of its single parent. If the organism is well-adapted and the environment repetitive and static, this arrangement might work well. The monotony is broken, rarely, by mutation. But mutation, as we’ve stressed, is random and much more likely to do harm than good. All subsequent generations will be afflicted unless, improbably, there’s a compensating mutation down the line. The pace of evolution under such circumstances must be slow, as indeed seems to be reflected in the fossil record between 3.5 and about 1 billion years ago—until the invention of sex.

Now, instead of slow, random change in the genetic materials, imagine that you could in one step glue onto part of the existing messages a long, complex set of new instructions—not merely a change in one letter of one word of the DNA, but whole volumes of consumer-tested manuals. Imagine the same kind of reshuffling occurring in subsequent generations. This is a dumb idea if you’re ideally adapted to an unchanging or very marginal environment; then any change is for the worse. But if the world you must adapt to is heterogeneous and dynamic, evolutionary progress is better served when reams of new genetic instructions are made available in each generation than when all there is to deal with is an occasional conversion of an A into a C. Also, if you can reshuffle genes, you or your descendants can get out of the trap set by the accumulation, generation after generation, of deleterious mutations.3 Harmful genes can quickly be replaced by advantageous ones. Sex and natural selection work as a kind of proofreader, replacing the inevitable mutational errors by uncontaminated instructions. This may be why the eukaryotes diversified—into the separate evolutionary lines that would lead to protozoa (like paramecia), plasmodia (like those that cause malaria), algae, fungi, all land plants and all animals—just around the time that eukaryotes hit upon sex.

Some modern organisms—ranging from bacteria to aphids to aspens—sometimes reproduce sexually and sometimes asexually. They can go either way. Others—dandelions, for example, and certain whiptail lizards—have recently evolved from sexual to asexual forms, as seems clear from their anatomy and behavior: Dandelions produce flowers and nectar that are useless for their current reproductive style; no matter how busy the bees are, they cannot be agents for dandelion fertilization. In the whiptail lizards, everyone is female and the hatchlings have no biological fathers. But reproduction still requires heterosexual foreplay—the formality of copulation with males of other, still sexual, lizard species, even though they cannot impregnate these females, or a ritual pseudocopulation with other females of the same species.4 Apparently, we are observing these dandelions and lizards so soon after their evolution from sexual to asexual beings that there has been insufficient time for the scripts and props of sex to have withered away. Perhaps there are circumstances when it’s wise to reproduce sexually and others when it isn’t; certain beings may prudently cycle from one state to the other, depending on the external environment. This option is, however, unavailable to us. We are stuck with sex.

Today a reshuffling of genetic instructions, similar to what happens in sex, occurs—oddly—in infection: A microbe enters a larger organism, evades its defenses, and insinuates its nucleic acid onto that of its host. There’s an intricate machinery in the cell, idling and ready to go, which reads and replicates preexisting sequences of A, C, G, and T. The machinery’s not good enough, though, to distinguish foreign nucleic acids from native ones. It’s a printing press for instruction manuals, and it will copy anything when its buttons are pushed. The parasite pushes the buttons, the cell’s enzymes are issued new instructions, and hordes of newly minted parasites are spewed out, itching for more subversion.

Occasionally, the dead manage to have sex and generate offspring. When a bacterium dies, its contents are spilled into the surroundings. Its nucleic acids don’t know much about the death of the bacterium and even as they slowly fall to pieces, the fragments remain for a time functional—like the severed leg of an insect. Should such a fragment be ingested by a passing (and intact) bacterium, it may be incorporated into the resident nucleic acids. Perhaps it is used as an independent record of what undamaged instructions should say, helpful in repairing DNA altered by oxygen. Maybe this extremely rudimentary form of sex arose along with the Earth’s oxygen atmosphere.

Bizarre chimerical gene combinations happen more rarely—for example, between bacteria and fish (not only are there bacterial genes in fish today; there are also fish genes in bacteria), or baboons and cats. They seem to have been brought about by a virus attaching itself to the DNA of a host organism, reproducing with and accommodating to the host over the generations, and then shaking loose to infect another species while carrying some of the original host’s genes with it. Cats are known to have acquired a baboon virogene somewhere on the shores of the Mediterranean Sea 5 to 10 million years ago.5 Viruses are looking more and more as if they are peripatetic genes that cause disease only incidentally. But if genetic exchanges can occur today in such widely divergent organisms, it must be far easier for them to occur, by accident, in organisms of the same or very closely related species. Perhaps sex started out as an infection, becoming later institutionalized by the infecting and infected cells.

Two distant relatives, members of the same species, each in the process of replication, find their nucleic acid strands, one from each, laid down, cozily, alongside one another. A short segment of one very long sequence might be, say,

 … ATG AAG TCG ATC CTA …