Выбрать главу

Mammals suckle their young, but only the females are appropriately endowed.* It’s one of the few cases where the definition of a major classification category in biology, or taxon, is determined by the characteristics of only one of the sexes. Giving milk is also hormonally mediated. Mother’s milk is essential for the young, who are born helpless, unable to digest the adult diet. This is another reason that females spend more time with, and therefore have a greater investment in, the young. The males are generally more interested in other things—dominance, aggression, territoriality, many sex partners.

The connection between steroids and aggression applies with surprising regularity across the animal kingdom. Remove the principal source of sex hormones and aggression declines, not just among the mammals and birds, but in lizards and even fish. Treat castrated males with testosterone and the aggression returns. Give estrogen to intact animals and aggression diminishes, again across all these species. The repeated use of these same steroids for the same functions, turning aggression on and off, for so many different animals, is a testament both to their effectiveness and to their antiquity.

Aggression is adaptive, but only in controlled amounts. The repertoire of aggressive behavior is on call, awaiting only to be disinhibited. The steroids, their production titrated by the social environment and the biological clocks, do the disinhibiting. This being the case, why is it that males are so often more aggressive than females? If the females can generate a little less estrogen and a little more testosterone, can’t they become as aggressive as males? Something like gender equality in aggression occurs in wolves, tree squirrels, laboratory mice and rats, short-tailed shrews, ring-tailed lemurs, and gibbons. In the southern flying squirrel, males are not territorial but females are, and most quarrels between the sexes are initiated by the females—and won by them.13 The clear fact that males are more aggressive than females among us humans (where blood plasma testosterone is about ten times greater in men than in women) by no means commits the rest of the animal kingdom, or even the rest of the primates, to the same arrangement.

As anyone knows who has seen a pet tomcat drag himself home after an absence of a day or two—with an eye closed, an ear torn, his fur matted and bloody—testosterone exacts a price. What happens if you take a male animal—let’s say, someone less combative than tomcats out for a night on the town—and equip him with an implant that keeps his testosterone blood levels high? When this is done to sparrows, hardy territorialists, there seems to be no significant increase in the sparrow murder rate. But when male cowbirds are implanted, their numbers markedly decrease;14 many birds are now observed with unusually serious injuries, clearly obtained in combat with their fellows. Unlike sparrows, cowbirds establish dominance hierarchies but do not have core territorial refuges into which they can flee. Bluff can escalate into serious fighting if you’re simultaneously charged up with testosterone and have no tradition of sanctuary. Another steroid deficit: Male birds with artificially high testosterone levels are less inclined to feed their hatchlings.15 Macho males tend to neglect their family responsibilities.

Sex hormones are now manufactured by pharmaceutical companies, and widely used—legally and illegally. We can learn something about their role in Nature by asking why people use them. Anabolic steroids are molecules very like, but usually not identical to, testosterone. They’re taken mainly by: (1) bodybuilders and athletes (who widely believe that certain feats of strength can be accomplished only by young men on steroids); (2) young men who wish to macho up, usually to attract women or other men; and (3) those who wish to disinhibit their meanness (nightclub bouncers, hit men in organized crime, prison guards, and so on).16 The enhanced musculature does not come about through steroids alone; it also requires vigorous and systematic exercise. One of the side effects is facial and back acne. Anabolic steroids don’t seem to grow hair. Large doses lead to dysfunction and atrophy of the testicles—perhaps the body’s response to excessive testosterone titers; too much testosterone is socially sufficiently dangerous that a mechanism may have evolved so that tendencies toward excessive production aren’t passed on to future generations.

Estrogen is taken by women, usually post-menopause or post-hysterectomy, to preserve sexual interest and lubrication, to slow loss of bone calcium, and to achieve a more youthful complexion. Bodybuilding and transsexual women may take anabolic steroids because they strikingly redistribute weight—from thighs to chest and biceps, for example. Transsexual men taking estrogen redistribute weight the other way, grow breasts, and feminize the nipples and areolae; there’s also a general mellowing of temperament. Bearing in mind these consequences of taking sex hormones as an adult, and the much more profound influence they have on the embryo—actually determining which sexual organs will be present—it seems likely that far subtler changes in hormone levels might influence not just dominance, territoriality, aggression, care for the young, gentleness, anxiety level, and talent for conflict resolution, but also sexual appetite and preference.

——

Bulls, stallions, and roosters are made into steers, geldings, and capons because humans find their machismo inconvenient—the very same male spirit that the castrators likely admire in themselves. One or two skilled motions of the blade—or a deft bite by a reindeer-herding Lapp woman—and the testosterone levels are down to manageable proportions for the rest of the animal’s life. Humans want their domestic animals to be submissive, easily controlled. Intact males are an awkward necessity; we want just enough of them to father a new generation of captives.

Something similar although less direct happens within the dominance hierarchy. From pit vipers to primates, the loser in ritual combat often experiences a steep decline in testosterone and related sex hormones, making him less likely to challenge the leadership at a later time, and therefore less likely to be injured. On a molecular level, he’s learned his lesson. With fewer circulating steroids, he’s now less ardent in his pursuit of females—at least when high-ranking males are around. This also is to the liking of the alphas. Again, decreases in testosterone levels following defeat are usually much more marked than any increases following victory.

Back to the testicles of sparrows: In a breeding area each little piece of territory has a male sparrow who will defend it against all comers.* Suppose a meddling ornithologist captures one of these territorial males and removes him from the territory. What happens? Other males from adjacent areas—many of them not previously able to defend a territory—move in. Of course they have to threaten and intimidate before they’ll be taken seriously. So the general level of sparrow anxiety rises, both among the newcomers and among unreplaced sparrows in adjacent territories. Political tensions become high. If now we monitor the bloodstreams of the sparrows in the course of their disputes (which from our point of view, of course, seem petty, but to them it’s Quemoy and Matsu), we find that everyone’s testosterone level has risen—the newly introduced males who are trying to establish their territories, and the males of neighboring territories who are now required to do more in the way of defending than has been their recent practice. Something similar is true for many animals.

Those who have more testosterone, by and large, become more aggressive. Those who need more testosterone, by and large, generate it. Testosterone seems to play a vital role as both the cause and the effect of aggression, territoriality, dominance, and the rest of the “boys-will-be-boys” constellation of male behavioral traits. This seems to be true for widely differing species, including monkeys, apes, and humans.