Выбрать главу

Preadolescent female mice have a molecule in theirurine that induces testosterone production in males who get a whiff. In turn, the males’ urine now contains pheromones which, when sniffed by the immature female, quicken her sexual development. She matures early if there are males around, and late if there aren’t—a positive feedback loop that saves unnecessary effort. (As you might expect, female mice who can’t detect odors never come into heat.) What’s more, normal pregnant females who sniff the urine from males of a different strain of mice spontaneously abort their pregnancies; they resorb the embryos back into their bodies and quickly come into heat.23 This is convenient for the alien males. If the resident males don’t like it, it’s up to them to stop strangers from coming around with their abortion-inducing aromas.

In mice, as for many other animals, testosterone begins to be manufactured in earnest at puberty, and that’s when serious aggression against other mice begins. In adult males, the more testosterone, the quicker will be the attack when a strange male appears at the territorial frontiers. Again, castrate the males and their aggressiveness declines. Again, deliver testosterone to the castrates and their aggressiveness increases. Male mice are given to “marking” their environment with tiny dribbles of urine—a practice they pursue with redoubled effort when other mice are around (or when they come upon some unfamiliar object, maybe a hairbrush). Because of embryo resorption, if the males are to leave progeny at all, they must be the chief urinators in their territory. Maybe marking is like nametags on luggage, “no trespassing” signs on private property, or heroic portraits of the national leader in public places. The doughty little mouse is singing “This land is my land” and “She belongs to me.” Even when he’s not physically present he wants passersby to take careful note of his proprietorship. As you might suspect, castrate the mouse and urinary marking declines strikingly; resupply testosterone and his compulsion to mark is rekindled.

Normal female mice are infrequent urinators. They are not inveterate markers. But what happens if anatomically normal female infants are jolted with testosterone? Then they begin marking often. (If a similar experiment is done in dogs, adult females who were given testosterone before birth adopt the urination posture of the males; they lift one leg and trickle the urine down the other—one more indignity visited at the hands of the scientists.) When female rats with ovaries surgically removed are supplied with testosterone, they become aggressive, alternating a masculine propensity for confrontation with distinctly feminine sexual behavior. But one thing about giving testosterone to normal females early in their lives: When they grow up, the males find them much less attractive.

While testosterone in the blood is intimately connected with the expression of aggression in male animals, it is by no means the whole story. There are, for example, molecules in the brain that repress aggression. Hereditary strains of rats that are unusually violent turn out to have less of these inhibitory brain chemicals than more peace-loving strains. Aggressive rats are calmed when there are more of these chemicals in their brains; peaceful rats are agitated when there is less of these chemicals. If you’re a rat, busy watching violence in other rats—mice-killing, say—your level of inhibiting brain chemicals drops.24 You’re now more likely to be violent yourself, and not just toward mice. Your repressed aggressive tendencies have been disinhibited. And everybody else’s. Hostility can then rapidly spread through your group, expressed differently by different individuals. Perhaps that’s what happened with Calhoun’s rats, so confined that aggression and despair spread in waves, reflected and amplified from multiple foci through the community. Violence is contagious.

In experiments performed by Heidi Swanson and Richard Schuster,25 rats were given a complex cooperative task to learn, having to run together over specific floor panels in a particular sequence. If they succeeded, they were rewarded with sugar water; if they didn’t, they found themselves racing around the experimental chamber for the fun of it. Nobody taught them what to do, or at least not directly. It was trial and error. The experiment was tried on pairs of males, pairs of females, pairs of castrated males, and pairs of castrated males with testosterone implants. Some of the rats had previously lived alone.

Here’s how it turned out: Females, as well as male castrates, learned fairly quickly. Normal males and castrates with administered testosterone learned much more slowly. Males who had previously lived alone did still worse. Some pairs of previously solitary male rats—pairs with intact testicles as well as pairs of testosterone-jolted castrates—never learned at all.

For the solitary males this is just what you might expect: Because you live alone you have little experience in cooperating, so probably you’re not going to do very well on a demanding test of cooperation. But then, why should females who’ve been living alone be able to figure it out? The answer seems to be that if you’re a solitary male, a loner, and you have to perform a complex task in coordination with someone else, testosterone makes you stupid. Every pair of males who ordinarily lived alone and couldn’t figure out how to pass the test was engaged in violent combat. Communal living, by contrast, tended to calm them down.

Swanson and Schuster conclude that the learning deficits were not so much due to aggression per se, as to aggression in the context of the dominance hierarchy. Those who tended to be the winners in ritualized (or real) combat—almost always it was the same individuals—would strut and saunter with hair erect, threatening, feinting, and occasionally attacking. The subordinates would crouch, close their eyes, and either freeze for long periods or hide. But tendencies to strut or crouch or hide are not well suited for the gymnastic cooperation needed to get that sugar water.

Cooperation has strong democratic overtones. Extreme dominance/submission hierarchies do not. The two are strongly incompatible. In these experiments, females intimidated others and fought as did the males, but today’s winner was often yesterday’s loser, and vice versa—unlike the males. Cowering and freezing were less common, and the female style of aggression didn’t impede social performance as much as her male counterpart’s.

The unfolding richness and complexity of testosterone-induced sexual behavior—dominance, territoriality and all the rest—is one means by which males compete to leave more offspring. It’s not the only possibility. We’ve already mentioned selection at the level of competition among sperm cells, as well as those species in which the male leaves a vaginal plug when he’s done to frustrate those who come after him. Male dragonflies attempt to undo the competition retroactively: Projecting from the male’s penis is a whip-like prong that attaches itself to the mass of sperm previously deposited in the female. When he withdraws, he takes his rivals’ semen with him. How much more direct the dragonflies are than the birds and mammals—our males violent, consumed with jealousy, spitting out threats and accusations, longing for exclusive sexual access to at least one female. The dragonfly male is spared much of this; he merely rewrites his mate’s sexual history.

We’ve concentrated on aggression, dominance, and testosterone because they seem to be of central importance in understanding human behavior and social systems. But there are many other behavior-eliciting hormones fundamental for human well-being, including estrogen and progesterone in females. The fact that complex behavioral patterns can be triggered by a tiny concentration of molecules coursing through the bloodstream, and that different animals of the same species generate different amounts of these hormones, is something worth thinking about when it’s time to judge such matters as free will, individual responsibility, and law and order.