Выбрать главу
Рис. 1.38

Йодистый азот — одно из самых чувствительных взрывчатых веществ. Касание нижнего образца птичьим пером привело к возникновению детонации. Расположенный выше образец йодистого азота отделен от взорвавшегося значительным воздушным промежутком, но детонацию вызвал движение воздуха от первого взрыва (ударная волна). Промышленно синтезируемые ВВ, конечно, не так чувствительны, как йодистый азот: чтобы инициировать в них детонацию, давление в ударной волне должно превышать 20 тысяч атмосфер.

Новое достижение немедленно нашло применение. Был воспроизведен кумулятивный заряд, который описал Лей. Слой иодистого азота наносился на конус из пластилина, но «бронебойный» эффект не был отчетлив, потому, что в первых опытах подрыв производился поднесением спички к основанию конуса. Углубленное изучение литературы показало: инициирование должно проводиться с вершины (рис. 1.39). Эффект стал заметнее, а, когда угол раствора конуса был увеличен, танк-мишень разнесло, несмотря на то, что пластилин затвердел на морозе (через много лет стало ясно, что из пластилина формировалась не кумулятивная струя, а что-то похожее на ударное ядро, рис. 1.40).

Рис. 1.39

Моделирование сжатия медной воронки (врезка слева вверху): взрывом, фронт которого обозначен «радугой». Из воронки с острым углом раствора вначале выдавливается самый высокоскоростной элемент. Далее: воронка сжата, кумулятивная струя сформировалась, внедрилась в броню. Внизу: металл струи расходится по стенкам каверны, вылетая из нее в направлении, обратном движению струи. Бронепробитие продолжается, пока кумулятивная струя не будет израсходована на всю длину.

В военные годы такие заряды называли «бронепрожигающими», потом термин «кумулятивный» (от латинского cumulo — накапливаю) сменил ошибочный. Кумулятивная струя (КС) ничего не «прожигает» и даже сама состоит не из расплавленного, а сравнительно холодного металла, но такого, в котором огромное давление нарушило прочностные связи и потому ведущего себя, как жидкость.

Рис. 1.40

При взрыве заряда с облицовкой, угол раствора которой значителен, формируется поражающий элемент называемый ударным ядром (сверху). Правда, на ядро он мало похож, и автор полагает, что более точен английский термин Explosively Formed Projectile — «снаряд, формируемый взрывом». Настоящее ударное ядро может пробить броню толщиной до 0,8 диаметра заряда, но обеспечивает значительный заброневой эффект (в центре: ядро прорвалось сквозь броню). Снизу: танк из пластилина, разбитый ударным ядром.

Любой желающий может наблюдать кумуляцию, даже если ему не разрешают ничего взрывать. Начать можно с наблюдений за падением в воду шарика (он должен быть несмачиваемым, например — из пластилина). При падении и погружении в воду, шарик создаст в ней полость, «схлопывание» которой приведет к формированию струи, бьющей вверх. Но струя эта будет «толстой» и невысокой.

Улучшить «кумулятивный заряд» можно, применив наполненную водой пробирку: отпущенная в строго вертикальный полет с высоты 5–6 см, она, при ударе о твердую поверхность, «выдаст» мощную, тонкую струю, бьющую выше чем на метр. Кумулятивная воронка образуется в фазе полета — мениск смачивающей стекло воды в невесомости стремится принять форму, близкую к полусфере. Потом — удар и стенки полусферы устремятся вниз, «схлопывая» полость и формируя струю. Освоив «низковысотные» опыты, можно, пожертвовав пробиркой, отпустить ее на пол от уровня груди. Удачное стечение обстоятельств приведет к тому, что капли — элементы кумулятивной струи — достигнут потолка.

Но опять же — не то: да, образуется струя, но что она может? Придется подобрать на свалке старый телевизор.

КС будет сформирована без взрыва — за него сыграет высоковольтный разряд в воде. Разрядник изготовим из обрезка «телевизионного» кабеля РК-50 или РК-75 внешним диаметром 10 мм. К оплетке припаяем медную шайбу с отверстием 3 мм — соосно с жилой. Другой конец кабеля зачистим на длину 6–7 см, и за центральную (высоковольтную) жилу укрепим на конденсаторе, обеспечив контакт жилы с его выводом.