Выбрать главу

В качестве предварительного усилителя используется дифференциальный операционный усилитель. Принципиальная схема устройства приведена на рис. 2.43.

Рис. 2.43. Выносной микрофон на операционном усилителе

Работа выносного микрофона (левая часть схемы) подробно изложена при описании работы схемы рис. 2.41. Остановимся на подробном описании правой части схемы. Основу правой части схемы представляет операционный усилитель DA1 типа КР1407УД2, включенный' по схеме дифференциального усилителя. Он представляет собой малошумящий операционный усилитель с малым током потребления.

Схема имеет коэффициент ослабления синфазных входных напряжении около 100 дБ. Это свойство и используется для подавления помех, наводимых в проводах и имеющих синфазный характер. Полезный сигнал и помеха снимаются с нагрузочных резисторов R6 к R7 и через конденсаторы СЗ и С4 поступают на инвертирующий и неинвертирующие входы микросхемы DA1 соответственно. Вследствие этого сигнал помехи ослабляется в микросхеме на 100 дБ. Полезный звуковой сигнал усиливается операционным усилителем в 10 раз. Коэффициент усиления сигнала можно изменять путем изменения сопротивления резисторов R8 и R9. Увеличение нх номиналов приводит к увеличению коэффициента усиления, определяемого как отношение R8/R4 (R9/R5). Сигнал, усиленный микросхемой, с выхода 6 через конденсатор С6 поступает на основной УЗЧ или магнитофон.

Резисторы R10, R11 и конденсатор C5 создают искусственную среднюю точку, в которой напряжение равно половине напряжения источника питания. Это обусловлено тем, что для питания устройства используется однополярное питание, а для нормальной работы операционного усилителя необходимо двухполярное питание. Резистор R13 устанавливает необходимый ток потребления микросхемы.

Микросхему DA1 можно заменить на КР140УД1208. Но возможно и применение любого другого операционного усилителя, включенного по типовой схеме со своими цепями коррекции. Резистор R13 в этом случае из схемы исключается.

При исправных деталях устройство начинает работать без дополнительных регулировок. Увеличить (уменьшить) усиление можно подбором сопротивлений R8 и R9.

Если левую часть схемы заменить схемой, приведенной на рис. 2.44, а из правой части убрать резисторы R6 и R7, то можно записывать на магнитофон телефонный разговор при снятой телефонной трубке.

Рис. 2.44. Специализированный микрофон

Микрофон-стетоскоп

Наряду с узконаправленными и проводными выносными микрофонами, существуют устройства, которые регистрируют вибрационные колебания стен, потолков, стекол, вентиляционных шахт и т. д.

Эти устройства называются микрофоны-стетоскопы. Они представляют собой довольно сложные устройства. Поэтому ниже описано устройство, которое может служить прообразом микрофона-стетоскопа, и принцип его работы. Принципиальная схема устройства приводится на рис. 2.45.

Рис. 2.45. Микрофон-стетоскоп

Усилитель звуковой частоты собран на микросхеме DA1 тина К140УД6. Резисторы R1 и R2 задают режим работы микросхемы.

Коэффициент усиления определяется значением сопротивления резистора R3. Транзисторы VT1 типа КТ315 и VT2 типа KT361 включены по схеме эмиттерных повторителей и усиливают выходной сигнал по току. Нагрузкой усилителя служат головные телефоны ТЭМ-2.

Датчик вибрации делается из пьезокерамической головки В1, снятой со старого проигрывателя. Виброколебания преобразуются пьезодатчиком в электрические и усиливаются усилителем DA1. В качестве пьезодатчика В2 можно применить пьезоизлучатель типа ЗП-1, ЗП-22 и им подобные от электронных часов и игрушек. Они хорошо воспроизводят частоты в диапазоне 800-3000 Гц, что, в основном, перекрывает речевой диапазон частот.

При необходимости можно усилить сигнал до нужной величины, используя дополнительный усилитель звуковой частоты. Сигнал на нею поступает с выхода операционного усилителя DA1. Подобный датчик может быть с успехом использован и в качестве датчика охранной сигнализации. В качестве пьезодатчика В1 можно использовать, например, ПЭ-1, ГЗП-308 и другие.

2.4. Приемные устройства оповещения и сигнализации

Описанные выше устройства — радиопередатчики и радиоретрансляторы — не могут быть эффективно использованы без приемного устройства. Для того, чтобы их целенаправленно использовать, они должны работать совместно со специальным радиоприемным устройством. В этой главе приводятся принципиальные схемы и подробные описания некоторых радиоприемных устройств. Особое внимание при выборе схем было уделено таким техническим характеристикам устройств, как высокая чувствительность, простота изготовления, минимально возможное количество деталей, простая настройка и др. При этом радиоприемники разделены по ряду признаков или особенностей их использования и изготовления. Описание начинается с приемников диапазона 27–29 МГц, работающих с амплитудной и частотной модуляцией. Далее приведен раздел с описанием радиоприемных устройств, работающих в диапазоне 65-108 МГц. Отдельно рассмотрены радиоприемные устройства более высокочастотного диапазона. Один из разделов данного параграфа включает в себя описание радиоприемных приставок и конвертеров на различные радиочастотные диапазоны.

Предлагаемые радиоприемные устройства могут быть использованы не только для работы с радиопередатчиками, но и в различных приемных трактах: трактах радиостанций, охранных сигнализаций и в системах дистанционного управления.

Печатные и монтажные платы устройств не приводятся по коммерческим соображениям, они изготавливаются самостоятельно, в зависимости от используемых деталей, габаритных размеров и так далее.

2.4.1. Радиоприемные устройства AM сигналов высокой чувствительности

Данное радиоприемное устройство позволяет принимать амплитудно-модулированные сигналы и диапазоне 27–29 МГц. Оно обладает высокой чувствительностью не хуже 0,5 МкВ/м при соотношении сигнал шум 3/1. Избирательность по соседнему каналу при расстройке на 9 кГц не хуже 30 дБ. Ток потребления при средней громкости — около 30 мА.

Принципиальная схема радиоприемника приведена на рис. 2.46.

Рис 2.46. Радиоприемное устройство амплитудно-модулированных сигналов

С антенны сигнал поступает на входной контур L1, С2, выделяющий полосу частот принимаемого сигнала. Выделенный высокочастотный сигнал с отвода катушки L1 поступает на базу транзистора VT2, входящего в состав каскодного смесителя. На эмиттер этого же транзистора с отвода катушки L3 поступает сигнал гетеродина, который собран на транзисторе VT4. Частота сигнала гетеродина задается параметрами частотозадающего контура L3, С9. Перестройка гетеродина осуществляется конденсатором переменной емкости С9. Частота гетеродина должна отличаться от частоты принимаемого сигнала на величину промежуточной частоты, в данном случае — на 465 кГц.

Каскодный смеситель, собранный на транзисторах VT1 и VT2, выполнен по схеме ОЭ — ОБ. Благодаря этому смеситель имеет большое выходное сопротивление, что позволяет включить контур L2, С6, настроенный на промежуточную частоту, в коллекторную цепь транзистора VT1. Режимы работы транзисторов смесителя по постоянному току определяются сопротивлением резисторов R1 и R2.

С выхода смесителя сигнал промежуточной частоты поступает на вход эмиттерного повторителя, собранного на транзисторе VT3. Он согласует высокое выходное сопротивление смесителя с низким входным сопротивлением пьезокерамического фильтра ZQ1. Фильтр ZQ1 определяет селективность по соседнему каналу. Он нагружен на согласованную нагрузку, функцию которой выполняет резистор R7. С этой нагрузки напряжение промежуточной частоты (ПЧ) поступает на вход двухкаскодного усилителя ПЧ, выполненного на транзисторах VT5-VT8. В каскодных усилителях используются схемы на транзисторах разной структуры с включением их по схеме ОК-ОБ.