Чем лучше качество резины, тем выше может подняться шар. При подъёме шара на высоту до 30 километров объём оболочки увеличивается почти в 90 раз. При этом толщина стенки оболочки уменьшается примерно в 17 раз. При подъёме от 30 до 40 километров объём шара должен увеличиваться ещё почти в два раза.
Совершенно очевидно, что даже для достижения высоты 40 километров оболочка должна быть сделана из резины очень высокого качества.
Ракета. Мы уже знаем, что самолёт не может летать без воздуха. Воздух необходим и для полёта аэростата и шара-зонда.
Ракета же не нуждается в воздухе. Больше того, атмосферный воздух только мешает её полёту, создавая сопротивление её перемещению и несколько ухудшая работу двигателя.
Внешний вид ракеты показан на рисунке 13.
Рис. 13. Внешний вид ракеты.
В камеру сгорания (рис. 14) подаётся горючее (например, керосин) и окислитель (например, азотная кислота).
При горении образуются газы, которые вытекают из камеры через отверстие в её задней стенке.
На рисунке 14, а стрелками изображено распределение давления по поверхности камеры сгорания при работе двигателя у поверхности земли.
Рис. 14. Схема показывает, как возникает сила тяги в ракетном двигателе.
Силы, приложенные к боковым поверхностям и уравновешивающие друг друга, на рисунке не показаны. Сила давления газов на переднюю стенку камеры больше, чем на заднюю, так как площадь задней стенки меньше на величину отверстия; результирующая сила будет направлена в сторону передней стенки.
Тяга всегда направлена в сторону, противоположную направлению вытекающих из камеры сгорания газов. Когда газы выбрасываются в сторону Земли, тяга направлена вверх.
Величина тяги зависит от давления газов в камере и от площади выходного отверстия. Чем больше давление газов и площадь выходного отверстия, тем больше тяга двигателя. Чтобы ракета могла лететь вверх, необходимо, чтобы сила тяги превышала вес ракеты.
Представим теперь, что двигатель работает на такой высоте, где нет воздуха, а значит, нет и внешнего давления. Давление на внутренней поверхности камеры распределится так же, как и в первом случае (рис. 14, б). Исчезновение внешних сил давления приведёт к увеличению результирующей силы, направленной вперёд, хотя процесс горения в камере и распределение давления внутри неё совершенно не изменились. Таким образом, при отсутствии атмосферы ракетный двигатель развивает большую тягу, чем при наличии её. Это ценное свойство ракетного двигателя позволяет использовать его для исследования очень высоких слоёв атмосферы.
Ракетный двигатель работает и в атмосфере и в безвоздушном пространстве. Это не значит, что ракета может достигнуть любой высоты. Наибольшая высота подъёма ракеты зависит от совершенства двигателя и самой ракеты, а также от вида применяющегося топлива.
Ещё в 1903 году знаменитый русский учёный К. Э. Циолковский опубликовал работу «Исследование мировых пространств реактивными приборами». В этой работе Циолковский предложил применить для реактивного двигателя жидкое топливо как наиболее удобное для высотных полётов и дал первую схему ракеты с жидкостно-реактивным двигателем.
«В качестве исследователя атмосферы, — писал Циолковский, — предлагаю реактивный прибор, то-есть род ракеты, но ракеты грандиозной и особенным образом устроенной…».
В 1947 году ракета с жидкостно-реактивным двигателем достигла высоты 187 километров.
Ещё большей высоты подъёма можно достичь с помощью «ракетного поезда» — составной ракеты. В работе «Космические ракетные поезда» в 1929 году Циолковский описал устройство предлагаемой им составной ракеты и подсчитал возможную высоту её подъёма.
Составная ракета представляет собой несколько отдельных ракет, соединённых одна с другой подобно вагонам поезда. Ракеты работают последовательно одна за другой. Ракета, использовавшая своё топливо, отсоединяется от поезда и падает на Землю. Составная ракета в полёте показана на рисунке 15.
Рис. 15. Ракетный поезд в полёте.
Составные ракеты уже используются для аэрологических наблюдений. В 1949 году был запущен ракетный поезд из двух ракет, из которых нижняя достигла высоты около 32 километров, затем отделилась от верхней и упала на Землю, а верхняя достигла высоты 400 километров.