Выбрать главу

Дальнейшие исследования ДНК еще больше ослабили теорию Мишера и укрепили веру ученых в то, что если хромосомы контролируют процесс наследования, то сама информация содержится именно в хромосомных белках, а не в ДНК. После смерти Мишера его дядя, тоже ученый, издал письма и неопубликованные статьи племянника под общим названием «Избранное», подходившим скорее сборнику рассказов или повестей. Составитель написал введение к этой книге, в котором с уверенностью сказал: «Значимость Мишера и его научного труда никогда не уменьшится. Напротив, она лишь возрастет, а его открытия и идеи станут семенами будущих плодов науки». В то время казалось, что эти теплые слова близкого человека выражают тщетные надежды: в некрологах Мишера нуклеин почти не упоминался. Казалось, что и ДНК, и Мишер окончательно отошли в науке на второй план. Тем не менее Мишер не умер в забвении – в научных кругах, пусть и весьма узких, его помнили.

* * *

Грегор Мендель при жизни прославился вовсе не открытием, а скандалом. По собственному признанию, Мендель постригся в монахи Августинского монастыря вовсе не из-за благого набожного порыва, а потому, что орден оплачивал все расходы нового брата, в том числе обучение. Мендель родился в крестьянской семье, которая смогла дать сыну начальное образование в сельской школе только потому, что ее открыл дядя Менделя. Чтобы Грегор мог учиться в философских классах института Ольмюца, одна из сестер пожертвовала часть своего приданого. Когда все расходы Менделя стали оплачиваться церковью, он поступил в Венский университет, где изучал естественные науки. Среди его преподавателей были известные ученые. Так, опыт, демонстрирующий эффект Доплера, Менделю-студенту показывал и объяснял сам Кристиан Доплер (правда, Доплер сперва отказал Менделю в посещении своего курса, поскольку, вероятно, был наслышан о том, что во время контрольных работ и экзаменов у студента случались нервные срывы).

Аббат монастыря Святого Фомы, где Мендель был пострижен в монахи, поощрял его увлечение наукой и статистикой отчасти из корыстных побуждений: аббат полагал, что применение научного подхода к ведению хозяйства поможет монастырю увеличить поголовье овец и урожай фруктов и винограда, а следовательно, вылезти из долгов. Но у Менделя хватало времени и на другие интересы: в течение нескольких лет он составлял карту солнечных пятен, следил за ураганами, держал пасеку и разводил пчел (следует сказать, что представители одной из пород, выведенных Менделем, оказались настолько агрессивными и мстительными, что их пришлось уничтожить), а также основал Австрийское метеорологическое общество.

В начале 1860-х годов, незадолго до того, как Фридрих Мишер был вынужден отказаться от медицинской практики и уйти в науку, Мендель стал проводить на первый взгляд довольно простые опыты на горохе в монастырском саду. Он выбрал горох не только потому, что любил его есть и был не прочь иметь постоянный источник любимого вкуса. Он выбрал горох еще и для чистоты эксперимента: ни пчелы, ни ветер не опыляли цветки его гороха (горох в обычных условиях – самоопылитель), поэтому Мендель мог наблюдать, какие именно растения скрещиваются между собой. Кроме того, ученый монах придавал большое значение двойственной (так сказать, «либо-либо») природе растений гороха: стебли у растений либо высокие, либо низкие; семена либо зеленые, либо желтые; горошины либо морщинистые, либо гладкие – третьего не дано. К слову, с этой особенностью гороха связан первый важный вывод, к которому пришел Мендель в ходе своих исследований: в паре альтернативных признаков один из признаков «доминирует» над другим. Например, при скрещивании чистой линии гороха с зелеными семенами с чистым растением гороха с желтыми семенами, у всех растений-потомков семена будут желтыми. Вывод: желтый цвет семян – доминирующий признак.

Важно отметить, однако, что второй признак – зеленый цвет семян – не исчезает у потомков полностью. Когда Мендель скрестил растения «второго поколения» друг с другом (все они отличались желтым цветом семян), среди полученных гибридов было несколько растений с зелеными семенами – один гибрид с рецессивным признаком (зелеными семенами) на три гибрида с доминирующим признаком (желтыми семенами). На других признаках их расщепление в соотношении 3:1 также подтвердилось[3].

вернуться

3

Здесь предлагается вспомнить менделевское отношение. Если вы помните, что это такое, можете спокойно возвращаться к тексту главы. Однако непременно возвращайтесь в этот раздел – среди сносок будет чем поживиться, обещаю.

Итак, напомню: Мендель экспериментировал с доминантными признаками (например, высокий стебель; обозначаются буквой А) и рецессивными признаками (например, низкий стебель; обозначаются буквой а). У растений и животных есть по две копии каждого гена – одна от матери, другая от отца. Так, при скрещивании растений АА с растениями аа (см. схему внизу слева) Мендель получал растения с генами Аа и, следовательно, с высоким стеблем (поскольку А доминирует над а):

Результаты скрещивания растений Аа с любым другим растением (см. схему справа сверху) были намного интереснее. Растение с геном Аа передает потомку один из признаков – А или а, поэтому в результате скрещивания могут появиться растения с геном АА, Аа, аА или аа. Первые три случая – это растения с высоким стеблем, а четвертый – растение с низким стеблем, несмотря на то, что оно появилось в результате скрещивания двух высоких растений. Это и есть расщепление признаков в отношении 3:1. Для полной ясности отмечу, что это отношение «работает» у всех растений и животных, а не является особенностью скрещивания растений гороха.

Еще одно менделевское отношение проявляется при скрещивании Аа с аа. В этом случае половина потомства унаследует ген аа и не будет иметь доминантного признака, а половина – ген Аа и доминантный признак соответственно.

Расщепление признаков в соотношении 1:1 часто встречается в роду, где какой-нибудь доминантный признак проявляется редко либо внезапно возникает вследствие мутации, поскольку редкий ген Аа будет часто скрещиваться с распространенным аа.

Генетики постоянно сталкиваются с менделевскими отношениями 3:1 и 1:1 в действии. Первый рецессивный человеческий ген (обусловливающий окрашивание мочи в темный цвет) был открыт учеными в 1902 году. Три года спустя открыли первый доминантный человеческий ген, «отвечающий» за аномально короткие пальцы.