Пусть мы имеем какое-либо решение системы дифференциальных уравнений в виде Х(t) = Ф(Х0, t), где Х(t) — значения координат фазовой траектории, проходящей через точку Х0 в момент времени t0. В принципе, эта система уравнений может быть разрешена относительно t: t = Ф-1 (Х, Х0).
Предположим, что мы знаем состояние динамической системы в момент Tn, соответствующее точке Хn, и хотим определить состояние той же системы Xn+1 в момент Tn+1. Тогда, воспользовавшись предыдущими формулами, получим Xn+1= Ф(Х0, Тn+1) = Ф(Х0,Tn + (ΔT)n) = Ф{X0, [Ф-1(X0, Хn) + (ΔTn]}.
Введем понятие оператора F, определяющего изменение системы Х во времени: Хn+1 = F(Xn). Оператор F порождает итерационный процесс и указывает преобразование состояния динамической системы Хn в момент времени Tn в её состояние Хn+1 в момент времени Tn+1.
В принципе, оператор F может быть введён в более общем случае, когда непрерывная зависимость от времени либо отсутствует вовсе, либо не может быть определена.
Основной идеей Г. Хакена, являющейся одной из основополагающих в Синергетике, является идея выделения среди обобщенных координат сложной системы нескольких наименее устойчивых мод, названных им главными модами или параметрами порядка, неустойчивость которых приводит к качественному изменению состояния всей системы, и таких координат, которые сами мало изменяются, однако которых изменяет характер устойчивости состояния основных мод. Они были названы управляющими параметрами.
Теория нелинейных динамических систем в настоящее время интенсивно развивается. Предложены различные формы классификации систем и их математических моделей. Введена терминология, которая активно внедряется в практику теоретических и экспериментальных исследований. Понятия фазового пространства, стационарной точки, цикла, тора, аттрактора, бифуркации, сепаратрисы уже давно вошли в обиход тех, кто использует результаты качественного анализа и расчётов параметров модельных динамических систем для исследования реальных явлений.
В настоящее время бурно развивается теория «странных» непериодических аттракторов, породившая новую терминологию: каскад бифуркаций, числа Фейгенбаума, фрактальная геометрия, множество Мандельброта, показатели Ляпунова.
Рассматриваются различные сценарии перехода от регулярного движения системы к детерминированному хаосу:
1. через каскад бифуркаций удвоения периода устойчивых циклов Фейгенбаума;
2. через разрушение неустойчивого трёхмерного тора с образованием странного аттрактора по сценарию Рюэля-Такенса;
3. через явление перемежаемости (сценарий Помо-Маннервиля).
Разработаны математические методы и алгоритмы, позволяющие говорить о становлении нового направления науки, которое в настоящее время называется «теорией детерминированного хаоса», и применять их при исследовании тех объектов, которые могут быть описаны с помощью математических моделей динамических систем.
Н. А. Магницким и С. В. Сидоровым предложена новая теория динамического хаоса в нелинейных диссипативных системах, утверждающая существование единственного универсального сценария перехода к хаосу и рождения сингулярных аттракторов в нелинейных диссипативных системах дифференциальных уравнений.
Особо следует выделить анализ эргодических свойств динамической системы, указывающих на возможность неоднозначного предсказания её будущего поведения даже для случая динамических систем, описываемых детерминированными уравнениями.
Глава 4. Анализ поля системы