Наиболее реалистичными являются непрерывная запись или дискретное определение параметра в конкретные моменты времени с последующей аппроксимацией полученных данных в виде непрерывных функций от времени.
В этом случае вместо зависимости параметра от времени может быть построена более информативная картина двумерной фазовой плоскости, по оси абсцисс которой отложен выбранный параметр, а по оси ординат — его производная по времени. Для автономных систем, то есть систем, динамика которых слабо зависит или вовсе не зависит от параметров поля, такой график может оказаться универсальным, не зависящим от начальной точки отсчёта во внешнем времени.
Здесь проявляется интуиция — параметр целого должен быть выбран таким образом, чтобы характер его изменения для автономных систем был универсальным, то есть, чтобы зависимость его изменения от времени для данной системы и её аналогов не зависела от внешних условий. Однако, любая сложная система может считаться автономной лишь приближённо.
Если выбран один параметр, интегрально определяющий меру структуры, то можно построить простейшие математические модели, приближенно описывающие процесс формирования, роста структуры и выхода её на тот или иной стабильный режим, а также процесс её разрушения или превращения в качественно новую структуру.
Для параметра целого, описывающего структуру, как и ранее, введем обозначение μ
. Рассмотрим два типа аппроксимации — итерационный и непрерывный.
Итерационный способ аппроксимации состоит в выражении последующего измеренного состояния системы через предыдущие μp= F(
…., μp-1,
μp-k, t
).
Особо следует выделить системы, которые могут принимать конечное число состояний. Динамика таких систем оказывается во многом эквивалентной динамике орбит конечных математических полугрупп или групп. Наиболее известным представителем таких систем является современный компьютер, который может быть непосредственно использован для моделирования их динамики.
Практически неограниченное развитие компьютерной техники и области её использования свидетельствует о существовании широкой сферы применения дискретных математических моделей с большим, но конечным числом возможных состояний, то есть значений параметра целого для достаточно подробного описания природных и техногенных процессов.
Фазовое пространство при детерминированном итерационном процессе может быть построено следующим образом. По оси абсцисс откладывается μp-1
, а по оси ординат μp
. Точка на соответствующей фазовой плоскости соответствует отображению. Для систем с конечным числом состояний количество точек конечно и равно числу состояний.
Любой динамический процесс такого типа в пределе выходит на стационарную точку, μp
= μp-1
, или на циклическую траекторию μp
= μp-к
, где к можно считать периодом цикла.
В пределе очень большого числа состояний область изменения параметра целого может быть аппроксимирована континуумом. В этом случае количество типов траекторий становится значительно больше, чем при дискретном задании. Именно здесь появляются странные аттракторы.
Значительный практический интерес представляет использование аппроксимирующих функций, имеющих разрывы функций и их производных в конечном числе точек. В этом случае особые точки отображений и аттракторы приобретают дополнительные особенности.
В случае гладкой зависимости параметра целого от времени динамика его изменения может быть описана дифференциальным уравнением dμ/df
= f(μ, t)
, где f(μ
,t) — заданная гладкая функция.
Решение и качественный анализ этого уравнения позволяют не только приближенно описывать динамику структуры, но и в какой-то степени предсказывать её будущее. Если структура или система развивается по внутренним законам (воздействие внешней среды (поля) на неё пренебрежимо мало либо носит стационарный характер), то для её описания может быть использовано автономное дифференциальное уравнение dμ/df
= f(μ)
.
В случае непрерывной аппроксимации наиболее удачным подходом является построение двумерных фазовых диаграмм, по одной из осей которых откладывается сам параметр, а по другой — его производная. Для автономных объектов фазовые траектории от времени не зависят.
В некоторых случаях дифференциального уравнения первого порядка для адекватного описания динамики параметра целого оказывается недостаточно. В этом случае можно перейти к дифференциальным уравнениям более высоких порядков или к введению комплексного параметра целого. В обоих случаях это математически эквивалентно увеличению числа координат.