Выбрать главу

= Как интересно. Прямо триллер.

— Естественно. Математика чрезвычайно эмоциональное занятие.

— Но, давай прощаться. У тебя есть ТРИ метода поиска корней и в зависимости от ситуации ты выберешь самый эффективный.

= У нас в классе этим уже особо не удивишь. Пожалуй, пойду заниматься с сестренкой ей в следующем году найдется кого удивить мгновенными решениями.

— Заодно почитай с ней Яков Исидорович Перельман «Быстрый счет [Тридцать простых приемов устного счета]», да и остальные книги Перельмана очень и очень достойны внимания. Если хочешь, открой более современную Билл Хэндли «Считайте в уме как компьютер».

= Ну, ладно, пока.

Вот такие дела.

День 7

Чет - нечет

— Привет.

= Привет?

Шо опять!!!

— Как ты знаешь, последние годы я развлекаюсь изготовлением fb2-версий книг. Последняя моя работа «Энциклопедический словарь юного математика» 1989 года издания (ясно, что статьи этой книги написаны намного раньше) несколько забавна здесь статья о вычислительной технике, ну что поделать, развитие стремительно (по закону Мура), а в остальном... математика штука стабильная, хотя... К недостаткам можно отнести, то, что упор в рассказе сделан на советских математиках, т.е. «за бортом» оказались... Но в целом, очень и очень интересно, в том числе и о КУ.

= Щас спою.

— Так вот. Если в КУ ax2 + bx + c = 0 коэффициент b — четен ТО назовем половинку b как h (half - половинка) изменяем запись ax2 + 2hx + c = 0 то корни будут:

Но если, в нашем случае, a = 1, то:

= Да! Существенные сокращения вычислений!

= Попробуем?

— Вперед. Пусть корни будут 3 и 5 тогда КУ будет x2 - 8x + 15 = 0 или x2 - 2·4x + 15 = 0

= Под корнем будет 16 — 15 ...... да, сложнейшие вычисления и корень равняется 4 ±1 т.е. подтверждается!

ЗАРАБОТАЛО!!!

= Как же мы сами до такого не додумались?!!!

Слушай, обидно, клянусь, самому обидно.

— Хорошо, давай теперь проанализируем новый параметр — четность. Как всегда, рассматриваем формулу x2 - Sx + M = 0.

= S будет четен если корни оба четны или нечетны. Т.е. S будет нечетным только тогда, когда нечетен только один из корней.

— Хорошо, далее.

= Произведение может быть нечетным только если нечетны оба корня.

— Давай изложим это в виде таблицы:

S

M

корни

чет

нечет

Оба корня нечетны

нечет

чет

Только один корень нечетен

чет

чет

Оба корня четны

= Ты упустил еще одну комбинацию.

— Все учтено могучим ураганом. Как ты помнишь, мы рассматриваем в основном Диофантовы уравнения, если ты еще помнишь, что это.

= Помню, помню. Забудешь тут. Ну и что?

— Перечитай свои-же рассуждения, и получится, что S и M одновременно нечетными быть не могут и если такое есть, то уравнение не Диофантово. Например: x2 — 9x + 13 = 0.

= Значит. Кроме анализа знаков, полезно проверить и четность, интересная информация.

— Еще из таблицы следует что S в диофантовых уравнениях чаще четен!

= О сколько нам открытий чудных явили эти два числаS и M.

— Хорошо, но нам пора прощаться. Сказать хотелось-бы многое о многом, но такое растекание по клавиатуре отдаляло-бы нас от задачи поставленной в аннотации. Поэтому:

Если у тебя есть фонтан, заткни его; дай отдохнуть и фонтану.

День 11

теорема Виета

— Привет! Пути к достижению цели, заявленной в аннотации, определены. И получить мгновенное решение уравнения, возможно, ограничивают только недостаточные тренировки.

«Я не боюсь того, кто изучает 10'000 различных ударов. Я боюсь того, кто изучает один удар 10'000 раз»Назови автора цитаты?

= Допустим, а о чем ты хочешь поговорить?

— Смотри!:

(x — x1)(x — x2) = 0

= Ну, и что? Видел я где-то это уравнение, но не вижу пользы. Если корни уже известны, то решать нечего.....

— Меня все время интересовало, откуда в теореме Виета, такие коэффициенты «сумма» и «произведение» корней? Слишком красиво!

Но посмотри внимательно на это уравнение.

1. для выполнения равенства — необходимо и достаточно, чтобы x равнялся или x1 или x2.

2. раскрой скобки

........

(x — x1)(x — x2) = x2 — (x1 + x2) x + (x1 * x2)

= Нечто подобное ты проделал в самом начале — при решении системы Диофанта.