Выбрать главу

3. составление формальной схемы применения комплекса принципов системной технологии для различных классов систем;

4. дополнение принципов системной технологии.

В данном разделе впервые сформулирован комплекс принципов осуществления системных технологий, отражающий объективное действие Законов системности и технологизации при построении и реализации технологических систем в любой сфере человеческой деятельности.

Глава 3. Системы

3.1. Особенности моделирования систем

Мы рассматриваем в данном разделе особенности моделирования систем и общих систем с позиций системной технологии. Мы исходим из общепринятого определения: «Модель – вспомогательный объект (или система), заменяющий изучаемый объект, представленный в наиболее общем виде» [8].

* В силу действия Закона системности общая система – это система, «в рамках» которой осуществляется функционирование триады систем «объект-субъект-результат»; модель этой системы логично использовать в качестве модели общей системы для триады систем, рассматриваемой с позиций принципа системности. Составление модели этой системы, как правило, в точном виде невозможно и по этой причине необходимо знать общие особенности моделирования систем, что в принципе позволяет избежать больших погрешностей при применении известных математических моделей. Особенности функционирования систем, рассматриваемых с позиций принципа системности и цели, которые мы преследуем при этом, могут приводить к самым различным моделям систем: иерархическим, дифференциальным, алгебраическим, имитационным и другим. Для целей системной технологии определяющим являются те особенности моделирования с использованием известных и новых математических моделей, применение которых позволяет наиболее эффективно использовать принципы системности и осуществления технологий, отражающие объективное действие фундаментальных Законов системности и технологизации.

Универсальная модель общей системы изложена, как уже отмечалось ранее, в разделе 3.3. Описываемые здесь особенности моделирования систем могут быть реализованы при моделировании систем на основе универсальной модели.

* Понятия, отражающие системный характер объекта исследования, использовались в трудах многих выдающихся ученых. Идеи, которые можно было бы положить в основу теории систем, излагались в работах Гегеля. Они сводятся к следующим общеизвестным теперь положениям: «целое больше суммы частей; целое определяет суть частей; части познаются только при рассмотрении в составе целого; части взаимосвязаны и взаимозависимы». Существенный вклад в формирование понятий системности внесли К.Маркс, Ф.Энгельс, В.Ленин [9,10]. Исторически первым вариантом общей теории систем явилась тектология А. А. Богданова [11], ей предшествовали труды A.M. Бутлерова, Д.И. Менделеева, Н. Белова, Е.С. Федорова. В 30-х годах английский эколог А. Тэнсли предложил термин «экосистема» [12]. С концепцией «общей теории систем» выступил австрийский биолог Людвиг фон Берталанфи [13]. Резко стимулировало развитие системных исследований создание кибернетики Н. Винером [14], так как одним из основных ее объектов исследования стали системы различной природы, как объекты управления. Системной, по своей сути, является концепция ноосферы В.И.Вернадского [15,16].
* Положения системологии справедливо подвергаются критическим и скептическим оценкам из-за неконкретности, малой эффективности системных исследований. Самой актуальной задачей системологии является разработка таких методов моделирования и реализации систем, которые можно эффективно применять на практике. На эти вопросы в отношении своего круга проблем отвечает системная технология.
* Значение системной методологии объясняется, как известно, тремя основными причинами.

Во-первых, большинство традиционных научных дисциплин – биология, психология, экология, лингвистика, математика, социология, и др., дополнили объекты своего рассмотрения моделями систем.

Во-вторых, технический прогресс привел к тому, что объектами проектирования, конструирования и производства оказались большие и сложные системы. Поэтому возник комплекс новых дисциплин, таких, как кибернетика, информатика, бионика и др., одна из основных задач которых – моделирование систем.

Наконец, в-третьих, появление в науке, технике и производстве проблем исследования, проектирования и реализации систем повысило методологическую роль системных исследований.

Системная технология превращает системную методологию в совокупность наглядных приемов и моделей.

* Термин «система» охватывает очень широкий спектр понятий. Например, существуют горные системы, системы рек и солнечная система. Человеческий организм включает опорно-двигательную, сердечно-сосудистую, нервную, лимфатическую и другие системы. Мы ежедневно сталкиваемся с системами транспорта и связи (телефон, телеграф и т.д.) и экономическими системами. Исаак Ньютон назвал «системой мира» предмет своих исследований. Модель системы понимается и как план, метод, порядок, устройство, Поэтому и неудивительно, что этот термин получил среди ученых, конструкторов, производственников и др. специалистов такое распространение.

Системная технология предлагает спектр моделей для описания структур и процессов систем, а также для описания их взаимодействий с внешними средами системы и элементов системы и с внутренними средами системы и элементов системы.

* Наибольший интерес вызывают модели большой и сложной систем. С позиций системной технологии, объективно существующие системы не являются большими, малыми, сложными или простыми. Таковыми они становятся с позиций субъекта деятельности при их моделировании в силу действия реальных соотношений познавательных намерений человека с его возможностями моделирования исследуемых систем. Модель системы необходима, чтобы точно описать структуру и процесс системы, а также определить по модели параметры и характеристики системы при допустимых затратах ресурсов (затраты человеческого ресурса на исследование системы по данной модели, время расчетов, ресурс компьютерного обеспечения и т.д.). С понятием приемлемой точности (или погрешности) моделирования, получаемой при допустимых затратах ресурсов, можно связать понятия большой и сложной систем, в т.ч. и технологических систем, рассматриваемых системной технологией.
* В системной технологии принято считать, что основной аспект сложности моделей систем — это использование трудноразрешимых моделей для описания процессов и структур системы. Например, для составления план-графика производственного процесса могут быть предложены «точные» алгоритмы составления расписаний, для применения которых недостаточно ресурсов вычислительных машин, находящихся в распоряжении менеджеров предприятия. Традиционный путь разрешения противоречия – нахождение «простой» модели, которая позволит определить параметры и характеристики системы с приемлемой точностью при допустимых затратах ресурсов.

При моделировании с помощью сложной модели часть системы может описываться графовыми или сетевыми моделями, другая – с помощью дифференциальных уравнений, для третьей используются вербальные модели и т.д. Это помогает находить приемлемые, с точки зрения точности, совокупности моделей для описания частей системы. Сложность системы для ее моделирования в рамках системной технологии заключается в том, что для составления модели сложной системы необходимо, как правило, использовать более чем две теории, более чем два языка описания системы ввиду качественного различия внутренней природы элементов системы между собой и наличия разных подходов к моделированию объектов различной природы.