Выбрать главу

The other branch of chemistry is organic chemistry, the chemistry of the substances which are associated with living things. For a time it was believed that the substances which are associated with living things were so marvelous that they could not be made by hand, from inorganic materials. This is not at all true — they are just the same as the substances made in inorganic chemistry, but more complicated arrangements of atoms are involved. Organic chemistry obviously has a very close relationship to the biology which supplies its substances, and to industry, and furthermore, much physical chemistry and quantum mechanics can be applied to organic as well as to inorganic compounds. However, the main problems of organic chemistry are not in these aspects, but rather in the analysis and synthesis of the substances which are formed in biological systems, in living things. This leads imperceptibly, in steps, toward biochemistry, and then into biology itself, or molecular biology.

Biology

Thus we come to the science of biology, which is the study of living things. In the early days of biology, the biologists had to deal with the purely descriptive problem of finding out what living things there were, and so they just had to count such things as the hairs of the limbs of fleas. After these matters were worked out with a great deal of interest, the biologists went into the machinery inside the living bodies, first from a gross standpoint, naturally, because it takes some effort to get into the finer details.

There was an interesting early relationship between physics and biology in which biology helped physics in the discovery of the conservation of energy, which was first demonstrated by Mayer in connection with the amount of heat taken in and given out by a living creature.

If we look at the processes of biology of living animals more closely, we see many physical phenomena: the circulation of blood, pumps, pressure, etc. There are nerves: we know what is happening when we step on a sharp stone, and that somehow or other the information goes from the leg up. It is interesting how that happens. In their study of nerves, the biologists have come to the conclusion that nerves are very fine tubes with a complex wall which is very thin; through this wall the cell pumps ions, so that there are positive ions on the outside and negative ions on the inside, like a capacitor. Now this membrane has an interesting property; if it “discharges” in one place, i.e., if some of the ions were able to move through one place, so that the electric voltage is reduced there, that electrical influence makes itself felt on the ions in the neighborhood, and it affects the membrane in such a way that it lets the ions through at neighboring points also. This in turn affects it farther along, etc., and so there is a wave of “penetrability” of the membrane which runs down the fiber when it is “excited” at one end by stepping on the sharp stone. This wave is somewhat analogous to a long sequence of vertical dominoes; if the end one is pushed over, that one pushes the next, etc. Of course this will transmit only one message unless the dominoes are set up again; and similarly in the nerve cell, there are processes which pump the ions slowly out again, to get the nerve ready for the next impulse. So it is that we know what we are doing (or at least where we are). Of course the electrical effects associated with this nerve impulse can be picked up with electrical instruments, and because there are electrical effects, obviously the physics of electrical effects has had a great deal of influence on understanding the phenomenon.

The opposite effect is that, from somewhere in the brain, a message is sent out along a nerve. What happens at the end of the nerve? There the nerve branches out into fine little things, connected to a structure near a muscle, called an endplate. For reasons which are not exactly understood, when the impulse reaches the end of the nerve, little packets of a chemical called acetylcholine are shot off (five or ten molecules at a time) and they affect the muscle fiber and make it contract — how simple! What makes a muscle contract? A muscle is a very large number of fibers close together, containing two different substances, myosin and actomyosin, but the machinery by which the chemical reaction induced by acetylcholine can modify the dimensions of the muscle is not yet known. Thus the fundamental processes in the muscle that make mechanical motions are not known.

Biology is such an enormously wide field that there are hosts of other problems that we cannot mention at all — problems on how vision works (what the light does in the eye), how hearing works, etc. (The way in which thinking works we shall discuss later under psychology.) Now, these things concerning biology which we have just discussed are, from a biological standpoint, really not fundamental, at the bottom of life, in the sense that even if we understood them we still would not understand life itself To illustrate: the men who study nerves feel their work is very important, because after all you cannot have animals without nerves. But you can have life without nerves. Plants have neither nerves nor muscles, but they are working, they are alive, just the same. So for the fundamental problems of biology we must look deeper; when we do, we discover that all living things have a great many characteristics in common. The most common feature is that they are made of cells, within each of which is complex machinery for doing things chemically. In plant cells, for example, there is machinery for picking up light and generating sucrose, which is consumed in the dark to keep the plant alive. When the plant is eaten the sucrose itself generates in the animal a series of chemical reactions very closely related to photosynthesis (and its opposite effect in the dark) in plants.

In the cells of living systems there are many elaborate chemical reactions, in which one compound is changed into another and another. To give some impression of the enormous efforts that have gone into the study of biochemistry, the chart in Fig. 3–1 summarizes our knowledge to date on just one small part of the many series of reactions which occur in cells, perhaps a percent or so of it.

Here we see a whole series of molecules which change from one to another in a sequence or cycle of rather small steps. It is called the Krebs cycle, the respiratory cycle. Each of the chemicals and each of the steps is fairly simple, in terms of what change is made in the molecule, but — and this is a centrally important discovery in biochemistry — these changes are relatively difficult to accomplish in a laboratory. If we have one substance and another very similar substance, the one does not just turn into the other, because the two forms are usually separated by an energy barrier or “hill.” Consider this analogy: If we wanted to take an object from one place to another, at the same level but on the other side of a hill, we could push it over the top, but to do so requires the addition of some energy. Thus most chemical reactions do not occur, because there is what is called an activation energy in the way. In order to add an extra atom to our chemical requires that we get it close enough that some rearrangement can occur; then it will stick. But if we cannot give it enough energy to get it close enough, it will not go to completion it will just go partway up the “hill” and back down again. However, if we could literally take the molecules in our hands and push and pull the atoms around in such a way as to open a hole to let the new atom in, and then let it snap back, we would have found another way, around the hill, which would not require extra energy, and the reaction would go easily. Now there actually are, in the cells, very large molecules, much larger than the ones whose changes we have been describing, which in some complicated way hold the smaller molecules just right, so that the reaction can occur easily. These very large and complicated things are called enzymes. (They were first called ferments, because they were originally discovered in the fermentation of sugar. In fact, some of the first reactions in the cycle were discovered there.) In the presence of an enzyme the reaction will go.