Выбрать главу

The structure of the substance DNA was studied for a long time, first chemically to find the composition, and then with x-rays to find the pattern in space. The result was the following remarkable discovery: The DNA molecule is a pair of chains, twisted upon each other. The backbone of each of these chains, which are analogous to the chains of proteins but chemically quite different, is a series of sugar and phosphate groups, as shown in Fig. 3–2. Now we see how the chain can contain instructions, for if we could split this chain down the middle, we would have a series BAADC… and every living thing could have a different series. Thus perhaps, in some way, the specific instructions for the manufacture of proteins are contained in the specific series of the DNA.

Attached to each sugar along the line, and linking the two chains together, are certain pairs of cross-links. However, they are not all of the same kind; there are four kinds, called adenine, thymine, cytosine, and guanine, but let us call them A, B, C, and D. The interesting thing is that only certain pairs can sit opposite each other, for example A with B and C with D. These pairs are put on the two chains in such a way that they “fit together,” and have a strong energy of interaction. However, C will not fit with A, and B will not fit with C; they will only fit in pairs, A against B and C against D. Therefore if one is C, the other must be D, etc. Whatever the letters may be in one chain, each one must have its specific complementary letter on the other chain.

What then about reproduction? Suppose we split this chain in two. How can we make another one just like it? If, in the substances of the cells, there is a manufacturing department which brings up phosphate, sugar, and A, B, C, D units not connected in a chain, the only ones which will attach to our split chain will be the correct ones, the complements of BAADC…, namely, ABBCD… Thus what happens is that the chain splits down the middle during cell division, one half ultimately to go with one cell, the other half to end up in the other cell; when separated, a new complementary chain is made by each half-chain.

Next comes the question, precisely how does the order of the A, B, C, D units determine the arrangement of the amino acids in the protein? This is the central unsolved problem in biology today. The first clues, or pieces of information, however, are these: There are in the cell tiny particles called ribosomes, and it is now known that that is the place where proteins are made. But the ribosomes are not in the nucleus, where the DNA and its instructions are. Something seems to be the matter. However, it is also known that little molecule pieces come off the DNA — not as long as the big DNA molecule that carries all the information itself, but like a small section of it. This is called RNA, but that is not essential. It is a kind of copy of the DNA, a short copy. The RNA, which somehow carries a message as to what kind of protein to make goes over to the ribosome; that is known. When it gets there, protein is synthesized at the ribosome. That is also known. However, the details of how the amino acids come in and are arranged in accordance with a code that is on the RNA are, as yet, still unknown. We do not know how to read it. If we knew, for example, the “lineup” A, B, C, C, A, we could not tell you what protein is to be made.

Figure 3–2 Schematic diagram of DNA.

Certainly no subject or field is making more progress on so many fronts at the present moment than biology, and if we were to name the most powerful assumption of all, which leads one on and on in an attempt to understand life, it is that all things are made of atoms, and that everything that living things do can be understood in terms of the jigglings and wigglings of atoms.

Astronomy

In this rapid-fire explanation of the whole world, we must now turn to astronomy. Astronomy is older than physics. In fact, it got physics started by showing the beautiful simplicity of the motion of the stars and planets, the understanding of which was the beginning of physics. But the most remarkable discovery in all of astronomy is that the stars are made of atoms of the same kind as those on the earth.[3] How was this done? Atoms liberate light which has definite frequencies, something like the timbre of a musical instrument, which has definite pitches or frequencies of sound. When we are listening to several different tones we can tell them apart, but when we look with our eyes at a mixture of colors we cannot tell the parts from which it was made, because the eye is nowhere near as discerning as the ear in this connection. However, with a spectroscope we can analyze the frequencies of the light waves and in this way we can see the very tunes of the atoms that are in the different stars. As a matter of fact, two of the chemical elements were discovered on a star before they were discovered on the earth. Helium was discovered on the sun, whence its name, and technetium was discovered in certain cool stars. This, of course, permits us to make headway in understanding the stars, because they are made of the same kinds of atoms which are on the earth. Now we know a great deal about the atoms, especially concerning their behavior under conditions of high temperature but not very great density, so that we can analyze by statistical mechanics the behavior of the stellar substance. Even though we cannot reproduce the conditions on the earth, using the basic physical laws we often can tell precisely, or very closely, what will happen. So it is that physics aids astronomy. Strange as it may seem, we understand the distribution of matter in the interior of the sun far better than we understand the interior of the earth. What goes on inside a star is better understood than one might guess from the difficulty of having to look at a little dot of light through a telescope, because we can calculate what the atoms in the stars should do in most circumstances.

One of the most impressive discoveries was the origin of the energy of the stars, that makes them continue to burn. One of the men who discovered this was out with his girlfriend the night after he realized that nuclear reactions must be going on in the stars in order to make them shine. She said, “Look at how pretty the stars shine!” He said, “Yes, and right now I am the only man in the world who knows why they shine.” She merely laughed at him. She was not impressed with being out with the only man who, at that moment, knew why stars shine. Well, it is sad to be alone, but that is the way it is in this world.

It is the nuclear “burning” of hydrogen which supplies the energy of the sun; the hydrogen is converted into helium. Furthermore, ultimately, the manufacture of various chemical elements proceeds in the centers of the stars, from hydrogen. The stuff of which we are made was “cooked” once, in a star, and spit out. How do we know? Because there is a clue. The proportion of the different isotopes — how much C12, how much C13, etc., is something which is never changed by chemical reactions, because the chemical reactions are so much the same for the two. The proportions are purely the result of nuclear reactions. By looking at the proportions of the isotopes in the cold, dead ember which we are, we can discover what the furnace was like in which the stuff of which we are made was formed. That furnace was like the stars, and so it is very likely that our elements were “made” in the stars and spit out in the explosions which we call novae and supernovae. Astronomy is so close to physics that we shall study many astronomical things as we go along.

вернуться

3

How I’m rushing through this! How much each sentence in this brief story contains. “The stars are made of the same atoms as the earth.” I usually pick one small topic like this to give a lecture on. Poets say science takes away from the beauty of the stars — mere globs of gas atoms. Nothing is “mere.” I too can see the stars on a desert night, and feel them. But do I see less or more? The vastness of the heavens stretches my imagination — stuck on this carousel my little eye can catch one-million-year-old light. A vast pattern — of which I am a part — perhaps my stuff was belched from some forgotten star, as one is belching there. Or see them with the greater eye of Palomar, rushing all apart from some common starting point when they were perhaps all together. What is the pattern, or the meaning, or the why? It does not do harm to the mystery to know a little about it. For far more marvelous is the truth than any artists of the past imagined! Why do the poets of the present not speak of it? What men are poets who can speak of Jupiter if he were like a man, but if he is an immense spinning sphere of methane and ammonia must be silent?